Black Lives Matter. Please consider donating to Black Girls Code today.

# Shapes in Python

How to make SVG shapes in python. Examples of lines, circle, rectangle, and path.

If you're using Dash Enterprise's Data Science Workspaces, you can copy/paste any of these cells into a Workspace Jupyter notebook.
Find out if your company is using Dash Enterprise.

New to Plotly?

Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

### Filled Area Chart¶

There are two ways to draw filled shapes: scatter traces and layout.shapes which is mostly useful for the 2d subplots, and defines the shape type to be drawn, and can be rectangle, circle, line, or path (a custom SVG path). You also can use scatterpolar, scattergeo, scattermapbox to draw filled shapes on any kind of subplots. To set an area to be filled with a solid color, you need to define Scatter.fill="toself" that connects the endpoints of the trace into a closed shape. If mode=line (default value), then you need to repeat the initial point of a shape at the of the sequence to have a closed shape.

In :
import plotly.graph_objects as go

fig = go.Figure(go.Scatter(x=[0,1,2,0], y=[0,2,0,0], fill="toself"))
fig.show()


You can have more shapes either by adding more traces or interrupting the series with None.

In :
import plotly.graph_objects as go

fig = go.Figure(go.Scatter(x=[0,1,2,0,None,3,3,5,5,3], y=[0,2,0,0,None,0.5,1.5,1.5,0.5,0.5], fill="toself"))
fig.show()


#### Vertical and Horizontal Lines Positioned Relative to the Axes¶

In :
import plotly.graph_objects as go

fig = go.Figure()

# Create scatter trace of text labels
x=[2, 3.5, 6],
y=[1, 1.5, 1],
text=["Vertical Line",
"Horizontal Dashed Line",
"Diagonal dotted Line"],
mode="text",
))

# Set axes ranges
fig.update_xaxes(range=[0, 7])
fig.update_yaxes(range=[0, 2.5])

# Line Vertical
dict(
type="line",
x0=1,
y0=0,
x1=1,
y1=2,
line=dict(
color="RoyalBlue",
width=3
)
))
# Line Horizontal
type="line",
x0=2,
y0=2,
x1=5,
y1=2,
line=dict(
color="LightSeaGreen",
width=4,
dash="dashdot",
),
)
# Line Diagonal
type="line",
x0=4,
y0=0,
x1=6,
y1=2,
line=dict(
color="MediumPurple",
width=4,
dash="dot",
)
)
fig.update_shapes(dict(xref='x', yref='y'))
fig.show()


#### Lines Positioned Relative to the Plot & to the Axes¶

In :
import plotly.graph_objects as go

fig = go.Figure()

# Create scatter trace of text labels
x=[2, 6],
y=[1, 1],
text=["Line positioned relative to the plot",
"Line positioned relative to the axes"],
mode="text",
))

# Set axes ranges
fig.update_xaxes(range=[0, 8])
fig.update_yaxes(range=[0, 2])

# Line reference to the axes
type="line",
xref="x",
yref="y",
x0=4,
y0=0,
x1=8,
y1=1,
line=dict(
color="LightSeaGreen",
width=3,
),
)
type="line",
xref="paper",
yref="paper",
x0=0,
y0=0,
x1=0.5,
y1=0.5,
line=dict(
color="DarkOrange",
width=3,
),
)

fig.show()


#### Creating Tangent Lines with Shapes¶

In :
import plotly.graph_objects as go

import numpy as np

# Generate data
x0 = np.linspace(1, 3, 200)
y0 = x0 * np.sin(np.power(x0, 2)) + 1

# Create figure with scatter trace
fig = go.Figure()

x=x0,
y=y0,
))

# Set title text
fig.update_layout(
title_text="$f(x)=x\\sin(x^2)+1\\\\ f\'(x)=\\sin(x^2)+2x^2\\cos(x^2)$"
)

type="line",
x0=1,
y0=2.30756,
x1=1.75,
y1=2.30756,
)
type="line",
x0=2.5,
y0=3.80796,
x1=3.05,
y1=3.80796,
)
type="line",
x0=1.90,
y0=-1.1827,
x1=2.50,
y1=-1.1827,
)
fig.update_shapes(dict(
xref="x",
yref="y",
opacity=0.7,
line=dict(
color="Crimson",
width=2.5,
)))
fig.show()


#### Rectangles Positioned Relative to the Axes¶

In :
import plotly.graph_objects as go

fig = go.Figure()

x=[1.5, 4.5],
y=[0.75, 0.75],
text=["Unfilled Rectangle", "Filled Rectangle"],
mode="text",
))

# Set axes properties
fig.update_xaxes(range=[0, 7], showgrid=False)
fig.update_yaxes(range=[0, 3.5])

# unfilled Rectangle
type="rect",
x0=1,
y0=1,
x1=2,
y1=3,
line=dict(
color="RoyalBlue",
),
)
# filled Rectangle
type="rect",
x0=3,
y0=1,
x1=6,
y1=2,
line=dict(
color="RoyalBlue",
width=2,
),
fillcolor="LightSkyBlue",
)
fig.update_shapes(dict(xref='x', yref='y'))
fig.show()


#### Rectangle Positioned Relative to the Plot & to the Axes¶

In :
import plotly.graph_objects as go

fig = go.Figure()

# Create scatter trace of text labels
x=[1.5, 3],
y=[2.5, 2.5],
text=["Rectangle reference to the plot",
"Rectangle reference to the axes"],
mode="text",
))

# Set axes properties
fig.update_xaxes(range=[0, 4], showgrid=False)
fig.update_yaxes(range=[0, 4])

# Rectangle reference to the axes
type="rect",
xref="x",
yref="y",
x0=2.5,
y0=0,
x1=3.5,
y1=2,
line=dict(
color="RoyalBlue",
width=3,
),
fillcolor="LightSkyBlue",
)
# Rectangle reference to the plot
type="rect",
xref="paper",
yref="paper",
x0=0.25,
y0=0,
x1=0.5,
y1=0.5,
line=dict(
color="LightSeaGreen",
width=3,
),
fillcolor="PaleTurquoise",
)

fig.show()


#### Highlighting Time Series Regions with Rectangle Shapes¶

In :
import plotly.graph_objects as go

fig = go.Figure()

# Add scatter trace for line
x=["2015-02-01", "2015-02-02", "2015-02-03", "2015-02-04", "2015-02-05",
"2015-02-06", "2015-02-07", "2015-02-08", "2015-02-09", "2015-02-10",
"2015-02-11", "2015-02-12", "2015-02-13", "2015-02-14", "2015-02-15",
"2015-02-16", "2015-02-17", "2015-02-18", "2015-02-19", "2015-02-20",
"2015-02-21", "2015-02-22", "2015-02-23", "2015-02-24", "2015-02-25",
"2015-02-26", "2015-02-27", "2015-02-28"],
y=[-14, -17, -8, -4, -7, -10, -12, -14, -12, -7, -11, -7, -18, -14, -14,
-16, -13, -7, -8, -14, -8, -3, -9, -9, -4, -13, -9, -6],
mode="lines",
name="temperature"
))

fig.update_layout(
shapes=[
# 1st highlight during Feb 4 - Feb 6
dict(
type="rect",
# x-reference is assigned to the x-values
xref="x",
# y-reference is assigned to the plot paper [0,1]
yref="paper",
x0="2015-02-04",
y0=0,
x1="2015-02-06",
y1=1,
fillcolor="LightSalmon",
opacity=0.5,
layer="below",
line_width=0,
),
# 2nd highlight during Feb 20 - Feb 23
dict(
type="rect",
xref="x",
yref="paper",
x0="2015-02-20",
y0=0,
x1="2015-02-22",
y1=1,
fillcolor="LightSalmon",
opacity=0.5,
layer="below",
line_width=0,
)
]
)

fig.show()


#### Circles Positioned Relative to the Axes¶

In :
import plotly.graph_objects as go

fig = go.Figure()

# Create scatter trace of text labels
x=[1.5, 3.5],
y=[0.75, 2.5],
text=["Unfilled Circle",
"Filled Circle"],
mode="text",
))

# Set axes properties
fig.update_xaxes(range=[0, 4.5], zeroline=False)
fig.update_yaxes(range=[0, 4.5])

fig.update_layout(
shapes=[
# unfilled circle
dict(
type="circle",
xref="x",
yref="y",
x0=1,
y0=1,
x1=3,
y1=3,
line_color="LightSeaGreen",
),
# filled circle
dict(
type="circle",
xref="x",
yref="y",
fillcolor="PaleTurquoise",
x0=3,
y0=3,
x1=4,
y1=4,
line_color="LightSeaGreen",
),
]
)

# Set figure size
fig.update_layout(width=800, height=800)

fig.show()


#### Highlighting Clusters of Scatter Points with Circle Shapes¶

In :
import plotly.graph_objects as go

import numpy as np
np.random.seed(1)

# Generate data
x0 = np.random.normal(2, 0.45, 300)
y0 = np.random.normal(2, 0.45, 300)

x1 = np.random.normal(6, 0.4, 200)
y1 = np.random.normal(6, 0.4, 200)

x2 = np.random.normal(4, 0.3, 200)
y2 = np.random.normal(4, 0.3, 200)

# Create figure
fig = go.Figure()

x=x0,
y=y0,
mode="markers",
))

x=x1,
y=y1,
mode="markers"
))

x=x2,
y=y2,
mode="markers"
))

x=x1,
y=y0,
mode="markers"
))

fig.update_layout(
shapes=[
dict(
type="circle",
xref="x",
yref="y",
x0=min(x0),
y0=min(y0),
x1=max(x0),
y1=max(y0),
opacity=0.2,
fillcolor="blue",
line_color="blue",
),
dict(
type="circle",
xref="x",
yref="y",
x0=min(x1),
y0=min(y1),
x1=max(x1),
y1=max(y1),
opacity=0.2,
fillcolor="orange",
line_color="orange",
),
dict(
type="circle",
xref="x",
yref="y",
x0=min(x2),
y0=min(y2),
x1=max(x2),
y1=max(y2),
opacity=0.2,
fillcolor="green",
line_color="green",
),
dict(
type="circle",
xref="x",
yref="y",
x0=min(x1),
y0=min(y0),
x1=max(x1),
y1=max(y0),
opacity=0.2,
fillcolor="red",
line_color="red",
),
],
)

# Hide legend
fig.update_layout(showlegend=False)

fig.show()


#### Venn Diagram with Circle Shapes¶

In :
import plotly.graph_objects as go

fig = go.Figure()

# Create scatter trace of text labels
x=[1, 1.75, 2.5],
y=[1, 1, 1],
text=["$A$", "$A+B$", "$B$"],
mode="text",
textfont=dict(
color="black",
size=18,
family="Arail",
)
))

# Update axes properties
fig.update_xaxes(
showticklabels=False,
showgrid=False,
zeroline=False,
)

fig.update_yaxes(
showticklabels=False,
showgrid=False,
zeroline=False,
)

type="circle",
fillcolor="blue",
x0=0,
y0=0,
x1=2,
y1=2,
line_color="blue"
)
type="circle",
fillcolor="gray",
x0=1.5,
y0=0,
x1=3.5,
y1=2,
line_color="gray"
)
fig.update_shapes(dict(
opacity=0.3,
xref="x",
yref="y",
layer="below"
))
# Update figure dimensions
fig.update_layout(
margin=dict(
l=20,
r=20,
b=100
),
height=600,
width=800,
plot_bgcolor="white"
)

fig.show()


Here we use the different axes (x1, x2) created by make_subplots as reference in order to draw shapes in figure subplots.

In :
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# Create Subplots
fig = make_subplots(rows=2, cols=2)

fig.update_layout(
shapes=[
dict(type="line", xref="x1", yref="y1",
x0=3, y0=0.5, x1=5, y1=0.8, line_width=3),
dict(type="rect", xref="x2", yref='y2',
x0=4, y0=2, x1=5, y1=6),
dict(type="rect", xref="x3", yref="y3",
x0=10, y0=20, x1=15, y1=30),
dict(type="circle", xref="x4", yref="y4",
x0=5, y0=12, x1=10, y1=18)])
fig.show()


#### SVG Paths¶

In :
import plotly.graph_objects as go

fig = go.Figure()

# Create scatter trace of text labels
x=[2, 1, 8, 8],
y=[0.25, 9, 2, 6],
text=["Filled Triangle",
"Filled Polygon",
"Cubic Bezier Curves"],
mode="text",
))

# Update axes properties
fig.update_xaxes(
range=[0, 9],
zeroline=False,
)

fig.update_yaxes(
range=[0, 11],
zeroline=False,
)

fig.update_layout(
shapes=[
dict(
type="path",
path="M 4,4 Q 6,0 8,4",
line_color="RoyalBlue",
),
# Cubic Bezier Curves
dict(
type="path",
path="M 1,4 C 2,8 6,4 8,8",
line_color="MediumPurple",
),
# filled Triangle
dict(
type="path",
path=" M 1 1 L 1 3 L 4 1 Z",
fillcolor="LightPink",
line_color="Crimson",
),
# filled Polygon
dict(
type="path",
path=" M 3,7 L2,8 L2,9 L3,10, L4,10 L5,9 L5,8 L4,7 Z",
fillcolor="PaleTurquoise",
line_color="LightSeaGreen",
),
]
)

fig.show()


### Drawing shapes on Cartesian plots¶

introduced in plotly 4.7

You can create layout shapes programatically, but you can also draw shapes manually by setting the dragmode to one of the shape-drawing modes: 'drawline','drawopenpath', 'drawclosedpath', 'drawcircle', or 'drawrect'. If you need to switch between different shape-drawing or other dragmodes (panning, selecting, etc.), modebar buttons can be added in the config to select the dragmode. If you switch to a different dragmode such as pan or zoom, you will need to select the drawing tool in the modebar to go back to shape drawing.

This shape-drawing feature is particularly interesting for annotating graphs, in particular image traces or layout images.

Once you have drawn shapes, you can select and modify an existing shape by clicking on its boundary (note the arrow pointer). Its fillcolor turns to pink to highlight the activated shape and then you can

• drag and resize it for lines, rectangles and circles/ellipses
• drag and move individual vertices for closed paths
• move individual vertices for open paths.

An activated shape is deleted by cliking on the eraseshape button.

Drawing or modifying a shape triggers a relayout event, which can be captured by a callback inside a Dash application.

In :
import plotly.graph_objects as go
fig = go.Figure()
text="Click and drag here <br> to draw a rectangle <br><br> or select another shape <br>in the modebar"
x=0.5,
y=0.5,
text=text,
xref="paper",
yref="paper",
showarrow=False,
font_size=20
)
# shape defined programatically
x0=-1, x1=0, y0=2, y1=3,
xref='x1', yref='y1')
# define dragmode and add modebar buttons
fig.update_layout(dragmode='drawrect')
'drawopenpath',
'drawclosedpath',
'drawcircle',
'drawrect',
'eraseshape'
]})


### Style of user-drawn shapes¶

The layout newshape attribute controls the visual appearance of new shapes drawn by the user. newshape attributes have the same names as layout shapes.

Note on shape opacity: having a new shape's opacity > 0.5 makes it possible to activate a shape by clicking inside the shape (for opacity <= 0.5 you have to click on the border of the shape), but you cannot start a new shape within an existing shape (which is possible for an opacity <= 0.5).

In :
import plotly.graph_objects as go
fig = go.Figure()
text="Click and drag<br> to draw a rectangle <br><br> or select another shape <br>in the modebar"
x=0.5,
y=0.5,
text=text,
xref="paper",
yref="paper",
showarrow=False,
font_size=20
)
# shape defined programatically
fillcolor='turquoise',
opacity=0.4,
editable=True,
x0=0, x1=1, y0=2, y1=3,
xref='x1', yref='y1'
)
fig.update_layout(dragmode='drawrect',
# style of new shapes
newshape=dict(line_color='yellow',
fillcolor='turquoise',
opacity=0.5))
'drawopenpath',
'drawclosedpath',
'drawcircle',
'drawrect',
'eraseshape'
]})


### Reference¶

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.update_layout( ... )

import dash
import dash_core_components as dcc
import dash_html_components as html

app = dash.Dash()
app.layout = html.Div([
dcc.Graph(figure=fig)
]) 