Black Lives Matter. Please consider donating to Black Girls Code today.
https://www.blackgirlscode.com/

Setting Graph Size in Python

How to manipulate the graph size in Python with Plotly.


New to Plotly?

Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

Adjusting Height, Width, & Margins with Plotly Express

In [1]:
import plotly.express as px

df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", facet_col="sex",
                 width=800, height=400)

fig.update_layout(
    margin=dict(l=20, r=20, t=20, b=20),
    paper_bgcolor="LightSteelBlue",
)

fig.show()

Adjusting Height, Width, & Margins

In [2]:
import plotly.graph_objects as go

fig = go.Figure()

fig.add_trace(go.Scatter(
    x=[0, 1, 2, 3, 4, 5, 6, 7, 8],
    y=[0, 1, 2, 3, 4, 5, 6, 7, 8]
))

fig.update_layout(
    autosize=False,
    width=500,
    height=500,
    margin=dict(
        l=50,
        r=50,
        b=100,
        t=100,
        pad=4
    ),
    paper_bgcolor="LightSteelBlue",
)

fig.show()

Automatically Adjust Margins

Set automargin to True and Plotly will automatically increase the margin size to prevent ticklabels from being cut off or overlapping with axis titles.

In [3]:
import plotly.graph_objects as go


fig = go.Figure()

fig.add_trace(go.Bar(
    x=["Apples", "Oranges", "Watermelon", "Pears"],
    y=[3, 2, 1, 4]
))

fig.update_layout(
    autosize=False,
    width=500,
    height=500,
    yaxis=dict(
        title_text="Y-axis Title",
        ticktext=["Very long label", "long label", "3", "label"],
        tickvals=[1, 2, 3, 4],
        tickmode="array",
        titlefont=dict(size=30),
    )
)

fig.update_yaxes(automargin=True)

fig.show()

Reference

See https://plotly.com/python/reference/#layout for more information and chart attribute options!

What About Dash?

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )

import dash
import dash_core_components as dcc
import dash_html_components as html

app = dash.Dash()
app.layout = html.Div([
    dcc.Graph(figure=fig)
])

app.run_server(debug=True, use_reloader=False)  # Turn off reloader if inside Jupyter