3D Scatter Plots in Python
How to make 3D scatter plots in Python with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
3D scatter plot with Plotly Express¶
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
Like the 2D scatter plot px.scatter
, the 3D function px.scatter_3d
plots individual data in three-dimensional space.
import plotly.express as px
df = px.data.iris()
fig = px.scatter_3d(df, x='sepal_length', y='sepal_width', z='petal_width',
color='species')
fig.show()
A 4th dimension of the data can be represented thanks to the color of the markers. Also, values from the species
column are used below to assign symbols to markers.
import plotly.express as px
df = px.data.iris()
fig = px.scatter_3d(df, x='sepal_length', y='sepal_width', z='petal_width',
color='petal_length', symbol='species')
fig.show()
Style 3d scatter plot¶
It is possible to customize the style of the figure through the parameters of px.scatter_3d
for some options, or by updating the traces or the layout of the figure through fig.update
.
import plotly.express as px
df = px.data.iris()
fig = px.scatter_3d(df, x='sepal_length', y='sepal_width', z='petal_width',
color='petal_length', size='petal_length', size_max=18,
symbol='species', opacity=0.7)
# tight layout
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()
3d scatter plots in Dash¶
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
3D Scatter Plot with go.Scatter3d¶
Basic 3D Scatter Plot¶
If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Scatter3D
class from plotly.graph_objects
.
Like the 2D scatter plot go.Scatter
, go.Scatter3d
plots individual data in three-dimensional space.
import plotly.graph_objects as go
import numpy as np
# Helix equation
t = np.linspace(0, 10, 50)
x, y, z = np.cos(t), np.sin(t), t
fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z,
mode='markers')])
fig.show()
3D Scatter Plot with Colorscaling and Marker Styling¶
import plotly.graph_objects as go
import numpy as np
# Helix equation
t = np.linspace(0, 20, 100)
x, y, z = np.cos(t), np.sin(t), t
fig = go.Figure(data=[go.Scatter3d(
x=x,
y=y,
z=z,
mode='markers',
marker=dict(
size=12,
color=z, # set color to an array/list of desired values
colorscale='Viridis', # choose a colorscale
opacity=0.8
)
)])
# tight layout
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()
Reference¶
See function reference for px.scatter_3d()
or https://plotly.com/python/reference/scatter3d/ for more information and chart attribute options!
What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )
from dash import Dash, dcc, html
app = Dash()
app.layout = html.Div([
dcc.Graph(figure=fig)
])
app.run_server(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter