Black Lives Matter. Please consider donating to Black Girls Code today.

Visualizing MRI Volume Slices in Python

How to create an plotly animation with slider that cycles through MRI cross-sections of a human brain.


If you're using Dash Enterprise's Data Science Workspaces, you can copy/paste any of these cells into a Workspace Jupyter notebook.
Alternatively, download this entire tutorial as a Jupyter notebook and import it into your Workspace.
Find out if your company is using Dash Enterprise.


New to Plotly?

Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

Visualization of MRI volume slices

In [1]:
# Import data
import time
import numpy as np

from skimage import io

vol = io.imread("https://s3.amazonaws.com/assets.datacamp.com/blog_assets/attention-mri.tif")
volume = vol.T
r, c = volume[0].shape

# Define frames
import plotly.graph_objects as go
nb_frames = 68

fig = go.Figure(frames=[go.Frame(data=go.Surface(
    z=(6.7 - k * 0.1) * np.ones((r, c)),
    surfacecolor=np.flipud(volume[67 - k]),
    cmin=0, cmax=200
    ),
    name=str(k) # you need to name the frame for the animation to behave properly
    )
    for k in range(nb_frames)])

# Add data to be displayed before animation starts
fig.add_trace(go.Surface(
    z=6.7 * np.ones((r, c)),
    surfacecolor=np.flipud(volume[67]),
    colorscale='Gray',
    cmin=0, cmax=200,
    colorbar=dict(thickness=20, ticklen=4)
    ))


def frame_args(duration):
    return {
            "frame": {"duration": duration},
            "mode": "immediate",
            "fromcurrent": True,
            "transition": {"duration": duration, "easing": "linear"},
        }

sliders = [
            {
                "pad": {"b": 10, "t": 60},
                "len": 0.9,
                "x": 0.1,
                "y": 0,
                "steps": [
                    {
                        "args": [[f.name], frame_args(0)],
                        "label": str(k),
                        "method": "animate",
                    }
                    for k, f in enumerate(fig.frames)
                ],
            }
        ]

# Layout
fig.update_layout(
         title='Slices in volumetric data',
         width=600,
         height=600,
         scene=dict(
                    zaxis=dict(range=[-0.1, 6.8], autorange=False),
                    aspectratio=dict(x=1, y=1, z=1),
                    ),
         updatemenus = [
            {
                "buttons": [
                    {
                        "args": [None, frame_args(50)],
                        "label": "▶", # play symbol
                        "method": "animate",
                    },
                    {
                        "args": [[None], frame_args(0)],
                        "label": "◼", # pause symbol
                        "method": "animate",
                    },
                ],
                "direction": "left",
                "pad": {"r": 10, "t": 70},
                "type": "buttons",
                "x": 0.1,
                "y": 0,
            }
         ],
         sliders=sliders
)

fig.show()