Linear Algebra in Python/v3
Learn how to perform several operations on matrices including inverse, eigenvalues, and determinents
See our Version 4 Migration Guide for information about how to upgrade.
New to Plotly?¶
Plotly's Python library is free and open source! Get started by dowloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.tools import FigureFactory as FF
import numpy as np
import pandas as pd
import scipy
Add Two Matrices¶
A Matrix is a 2D array that stores real or complex numbers. A Real Matrix is one such that all its elements $r$ belong to $\mathbb{R}$. Likewise, a Complex Matrix has entries $c$ in $\mathbb{C}$.
matrix1 = np.matrix(
[[0, 4],
[2, 0]]
)
matrix2 = np.matrix(
[[-1, 2],
[1, -2]]
)
matrix_sum = matrix1 + matrix2
colorscale = [[0, '#EAEFC4'], [1, '#9BDF46']]
font=['#000000', '#000000']
table = FF.create_annotated_heatmap(matrix_sum.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-sum')
Multiply Two Matrices¶
How to find the product of two matrices
matrix1 = np.matrix(
[[1, 4],
[2, 0]]
)
matrix2 = np.matrix(
[[-1, 2],
[1, -2]]
)
matrix_prod = matrix1 * matrix2
colorscale = [[0, '#F1FFD9'], [1, '#8BDBF5']]
font=['#000000', '#000000']
table = FF.create_annotated_heatmap(matrix_prod.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-prod')
Solve Matrix Equation¶
How to find the solution of $AX=B$
A = np.matrix(
[[1, 4],
[2, 0]]
)
B = np.matrix(
[[-1, 2],
[1, -2]]
)
X = np.linalg.solve(A, B)
colorscale = [[0, '#497285'], [1, '#DFEBED']]
font=['#000000', '#000000']
table = FF.create_annotated_heatmap(X.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-eq')
Find the Determinant¶
matrix = np.matrix(
[[1, 4],
[2, 0]]
)
det = np.linalg.det(matrix)
det
Find the Inverse¶
matrix = np.matrix(
[[1, 4],
[2, 0]]
)
inverse = np.linalg.inv(matrix)
colorscale = [[0, '#F1FAFB'], [1, '#A0E4F1']]
font=['#000000', '#000000']
table = FF.create_annotated_heatmap(inverse.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='inverse')
Find Eigenvalues¶
matrix = np.matrix(
[[1, 4],
[2, 0]]
)
eigvals = np.linalg.eigvals(matrix)
print("The eignevalues are %f and %f") %(eigvals[0], eigvals[1])
Find SVD¶
How to find the Singular Value Decomposition of a matrix, i.e. break up a matrix into the product of three matrices: $U$, $\Sigma$, $V^*$
matrix = np.matrix(
[[1, 4],
[2, 0]]
)
svd = np.linalg.svd(matrix)
u = svd[0]
sigma = svd[1]
v = svd[2]
u = u.tolist()
sigma = sigma.tolist()
v = v.tolist()
colorscale = [[0, '#111111'],[1, '#222222']]
font=['#ffffff', '#ffffff']
matrix_prod = [
['$U$', '', '$\Sigma$', '$V^*$', ''],
[u[0][0], u[0][1], sigma[0], v[0][0], v[0][1]],
[u[1][0], u[1][1], sigma[1], v[1][0], v[1][1]]
]
table = FF.create_table(matrix_prod)
py.iplot(table, filename='svd')