🏥 🏭 Working on the COVID-19 response in Canada? Plotly & the Canadian government can help you and your organization. Learn more and get in touch.

Scatter Plots on Mapbox in Python

How to make scatter plots on Mapbox maps in Python.


New to Plotly?

Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

Mapbox Access Token and Base Map Configuration

To plot on Mapbox maps with Plotly you may need a Mapbox account and a public Mapbox Access Token. See our Mapbox Map Layers documentation for more information.

Basic example with Plotly Express

Here we show the Plotly Express function px.scatter_mapbox for a scatter plot on a tile map.

Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on "tidy" data and produces easy-to-style figures.

In [1]:
import plotly.express as px
px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()
fig = px.scatter_mapbox(df, lat="centroid_lat", lon="centroid_lon",     color="peak_hour", size="car_hours",
                  color_continuous_scale=px.colors.cyclical.IceFire, size_max=15, zoom=10)
fig.show()

Basic Example

In [2]:
import plotly.graph_objects as go

mapbox_access_token = open(".mapbox_token").read()

fig = go.Figure(go.Scattermapbox(
        lat=['45.5017'],
        lon=['-73.5673'],
        mode='markers',
        marker=go.scattermapbox.Marker(
            size=14
        ),
        text=['Montreal'],
    ))

fig.update_layout(
    hovermode='closest',
    mapbox=dict(
        accesstoken=mapbox_access_token,
        bearing=0,
        center=go.layout.mapbox.Center(
            lat=45,
            lon=-73
        ),
        pitch=0,
        zoom=5
    )
)

fig.show()

Multiple Markers

In [3]:
import plotly.graph_objects as go

mapbox_access_token = open(".mapbox_token").read()

fig = go.Figure(go.Scattermapbox(
        lat=['38.91427','38.91538','38.91458',
             '38.92239','38.93222','38.90842',
             '38.91931','38.93260','38.91368',
             '38.88516','38.921894','38.93206',
             '38.91275'],
        lon=['-77.02827','-77.02013','-77.03155',
             '-77.04227','-77.02854','-77.02419',
             '-77.02518','-77.03304','-77.04509',
             '-76.99656','-77.042438','-77.02821',
             '-77.01239'],
        mode='markers',
        marker=go.scattermapbox.Marker(
            size=9
        ),
        text=["The coffee bar","Bistro Bohem","Black Cat",
             "Snap","Columbia Heights Coffee","Azi's Cafe",
             "Blind Dog Cafe","Le Caprice","Filter",
             "Peregrine","Tryst","The Coupe",
             "Big Bear Cafe"],
    ))

fig.update_layout(
    autosize=True,
    hovermode='closest',
    mapbox=dict(
        accesstoken=mapbox_access_token,
        bearing=0,
        center=dict(
            lat=38.92,
            lon=-77.07
        ),
        pitch=0,
        zoom=10
    ),
)

fig.show()

Nuclear Waste Sites on Campuses

In [4]:
import plotly.graph_objects as go
import pandas as pd

mapbox_access_token = open(".mapbox_token").read()

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/Nuclear%20Waste%20Sites%20on%20American%20Campuses.csv')
site_lat = df.lat
site_lon = df.lon
locations_name = df.text

fig = go.Figure()

fig.add_trace(go.Scattermapbox(
        lat=site_lat,
        lon=site_lon,
        mode='markers',
        marker=go.scattermapbox.Marker(
            size=17,
            color='rgb(255, 0, 0)',
            opacity=0.7
        ),
        text=locations_name,
        hoverinfo='text'
    ))

fig.add_trace(go.Scattermapbox(
        lat=site_lat,
        lon=site_lon,
        mode='markers',
        marker=go.scattermapbox.Marker(
            size=8,
            color='rgb(242, 177, 172)',
            opacity=0.7
        ),
        hoverinfo='none'
    ))

fig.update_layout(
    title='Nuclear Waste Sites on Campus',
    autosize=True,
    hovermode='closest',
    showlegend=False,
    mapbox=dict(
        accesstoken=mapbox_access_token,
        bearing=0,
        center=dict(
            lat=38,
            lon=-94
        ),
        pitch=0,
        zoom=3,
        style='light'
    ),
)

fig.show()

Set Marker Symbols

You can define a symbol on your map by setting symbol attribute. This attribute only works on Mapbox-provided styles:

  • basic
  • streets
  • outdoors
  • light
  • dark
  • satellite
  • satellite-streets
In [5]:
import plotly.graph_objects as go

token = open(".mapbox_token").read() # you need your own token

fig = go.Figure(go.Scattermapbox(
    mode = "markers+text+lines",
    lon = [-75, -80, -50], lat = [45, 20, -20],
    marker = {'size': 20, 'symbol': ["bus", "harbor", "airport"]},
    text = ["Bus", "Harbor", "airport"],textposition = "bottom right"))

fig.update_layout(
    mapbox = {
        'accesstoken': token,
        'style': "outdoors", 'zoom': 0.7},
    showlegend = False)

fig.show()

Reference

See https://plotly.com/python/reference/#scattermapbox for more information and options!

What About Dash?

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )

import dash
import dash_core_components as dcc
import dash_html_components as html

app = dash.Dash()
app.layout = html.Div([
    dcc.Graph(figure=fig)
])

app.run_server(debug=True, use_reloader=False)  # Turn off reloader if inside Jupyter