USA County Choropleth Maps in Python

How to create colormaped representations of USA counties by FIPS values in Python.


New to Plotly?

Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

Deprecation warning

This page describes a legacy "figure factory" method for creating map-like figures using self-filled scatter traces. This is no longer the recommended way to make county-level choropleth maps, instead we recommend using a GeoJSON-based approach to making outline choropleth maps or the alternative tile-based choropleth maps.

Required Packages

plotly_geo, geopandas, pyshp and shapely must be installed for this figure factory to run.

Run the following commands to install the correct versions of the following modules:

In [1]:
!pip install plotly-geo==1.0.0
!pip install geopandas==0.8.1
!pip install pyshp==2.1.2
!pip install shapely==1.7.1
Requirement already satisfied: plotly-geo==1.0.0 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (1.0.0)
Requirement already satisfied: geopandas==0.8.1 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (0.8.1)
Requirement already satisfied: pandas>=0.23.0 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from geopandas==0.8.1) (1.4.0)
Requirement already satisfied: shapely in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from geopandas==0.8.1) (2.0.5)
Requirement already satisfied: fiona in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from geopandas==0.8.1) (1.10.1)
Requirement already satisfied: pyproj>=2.2.0 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from geopandas==0.8.1) (3.6.1)
Requirement already satisfied: python-dateutil>=2.8.1 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from pandas>=0.23.0->geopandas==0.8.1) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from pandas>=0.23.0->geopandas==0.8.1) (2024.2)
Requirement already satisfied: numpy>=1.18.5 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from pandas>=0.23.0->geopandas==0.8.1) (1.22.4)
Requirement already satisfied: certifi in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from pyproj>=2.2.0->geopandas==0.8.1) (2024.8.30)
Requirement already satisfied: attrs>=19.2.0 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from fiona->geopandas==0.8.1) (24.2.0)
Requirement already satisfied: click~=8.0 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from fiona->geopandas==0.8.1) (8.1.7)
Requirement already satisfied: click-plugins>=1.0 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from fiona->geopandas==0.8.1) (1.1.1)
Requirement already satisfied: cligj>=0.5 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from fiona->geopandas==0.8.1) (0.7.2)
Requirement already satisfied: importlib-metadata in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from fiona->geopandas==0.8.1) (8.5.0)
Requirement already satisfied: six>=1.5 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas>=0.23.0->geopandas==0.8.1) (1.16.0)
Requirement already satisfied: zipp>=3.20 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (from importlib-metadata->fiona->geopandas==0.8.1) (3.20.2)
Requirement already satisfied: pyshp==2.1.2 in /home/circleci/project/doc/venv/lib/python3.9/site-packages (2.1.2)
Collecting shapely==1.7.1
  Downloading Shapely-1.7.1-1-cp39-cp39-manylinux1_x86_64.whl.metadata (34 kB)
Downloading Shapely-1.7.1-1-cp39-cp39-manylinux1_x86_64.whl (1.0 MB)
   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.0/1.0 MB 21.1 MB/s eta 0:00:00
Installing collected packages: shapely
  Attempting uninstall: shapely
    Found existing installation: shapely 2.0.5
    Uninstalling shapely-2.0.5:
      Successfully uninstalled shapely-2.0.5
Successfully installed shapely-1.7.1

If you are using Windows, follow this post to properly install geopandas and dependencies: http://geoffboeing.com/2014/09/using-geopandas-windows/. If you are using Anaconda, do not use PIP to install the packages above. Instead use conda to install them:

conda install plotly conda install geopandas

FIPS and Values

Every US state and county has an assigned ID regulated by the US Federal Government under the term FIPS (Federal Information Processing Standards) codes. There are state codes and county codes: the 2016 state and county FIPS codes can be found at the US Census Website.

Combine a state FIPS code (eg. 06 for California) with a county FIPS code of the state (eg. 059 for Orange county) and this new state-county FIPS code (06059) uniquely refers to the specified state and county.

ff.create_choropleth only needs a list of FIPS codes and a list of values. Each FIPS code points to one county and each corresponding value in values determines the color of the county.

Simple Example

A simple example of this is a choropleth a few counties in California:

In [2]:
import plotly.figure_factory as ff

fips = ['06021', '06023', '06027',
        '06029', '06033', '06059',
        '06047', '06049', '06051',
        '06055', '06061']
values = range(len(fips))

fig = ff.create_choropleth(fips=fips, values=values)
fig.layout.template = None
fig.show()

Change the Scope

Even if your FIPS values belong to a single state, the scope defaults to the entire United States as displayed in the example above. Changing the scope of the choropleth shifts the zoom and position of the USA map. You can define the scope with a list of state names and the zoom will automatically adjust to include the state outlines of the selected states.

By default scope is set to ['USA'] which the API treats as identical to passing a list of all 50 state names:

['AK', 'AL', 'CA', ...]

State abbreviations (eg. CA) or the proper names (eg. California) as strings are accepted. If the state name is not recognized, the API will throw a Warning and indicate which FIPS values were ignored.

Another param used in the example below is binning_endpoints. If your values is a list of numbers, you can bin your values into half-open intervals on the real line.

In [3]:
import plotly.figure_factory as ff

import numpy as np
import pandas as pd

df_sample = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv')
df_sample_r = df_sample[df_sample['STNAME'] == 'California']

values = df_sample_r['TOT_POP'].tolist()
fips = df_sample_r['FIPS'].tolist()

colorscale = [
    'rgb(193, 193, 193)',
    'rgb(239,239,239)',
    'rgb(195, 196, 222)',
    'rgb(144,148,194)',
    'rgb(101,104,168)',
    'rgb(65, 53, 132)'
]

fig = ff.create_choropleth(
    fips=fips, values=values, scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'],
    binning_endpoints=[14348, 63983, 134827, 426762, 2081313], colorscale=colorscale,
    county_outline={'color': 'rgb(255,255,255)', 'width': 0.5}, round_legend_values=True,
    legend=dict(
      title=dict(
        text='Population by County'
      )
    ),
    title=dict(
      text='California and Nearby States'
    )
)
fig.layout.template = None
fig.show()

Single State

In [4]:
import plotly.figure_factory as ff

import numpy as np
import pandas as pd

df_sample = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv')
df_sample_r = df_sample[df_sample['STNAME'] == 'Florida']

values = df_sample_r['TOT_POP'].tolist()
fips = df_sample_r['FIPS'].tolist()

endpts = list(np.mgrid[min(values):max(values):4j])
colorscale = ["#030512","#1d1d3b","#323268","#3d4b94","#3e6ab0",
              "#4989bc","#60a7c7","#85c5d3","#b7e0e4","#eafcfd"]
fig = ff.create_choropleth(
    fips=fips, values=values, scope=['Florida'], show_state_data=True,
    colorscale=colorscale, binning_endpoints=endpts, round_legend_values=True,
    plot_bgcolor='rgb(229,229,229)',
    paper_bgcolor='rgb(229,229,229)',
    legend_title='Population by County',
    county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
    exponent_format=True,
)
fig.layout.template = None
fig.show()

Multiple States

In [5]:
import plotly.figure_factory as ff

import pandas as pd

NE_states = ['Connecticut', 'Maine', 'Massachusetts', 'New Hampshire', 'Rhode Island', 'Vermont']
df_sample = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv')
df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)]

values = df_sample_r['TOT_POP'].tolist()
fips = df_sample_r['FIPS'].tolist()

colorscale = [
    'rgb(68.0, 1.0, 84.0)',
    'rgb(66.0, 64.0, 134.0)',
    'rgb(38.0, 130.0, 142.0)',
    'rgb(63.0, 188.0, 115.0)',
    'rgb(216.0, 226.0, 25.0)'
]

fig = ff.create_choropleth(
    fips=fips, values=values,
    scope=NE_states, county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
    legend_title='Population per county'

)
fig.update_layout(
    legend_x = 0,
    annotations = {'x': -0.12, 'xanchor': 'left'}
)

fig.layout.template = None
fig.show()

Simplify County, State Lines

Below is a choropleth that uses several other parameters. For a full list of all available params call help(ff.create_choropleth)

  • simplify_county determines the simplification factor for the counties. The larger the number, the fewer vertices and edges each polygon has. See http://toblerity.org/shapely/manual.html#object.simplify for more information.
  • simplify_state simplifies the state outline polygon. See the documentation for more information. Default for both simplify_county and simplify_state is 0.02

Note: This choropleth uses a divergent categorical colorscale. See http://react-colorscales.getforge.io/ for other cool colorscales.

In [6]:
import plotly.figure_factory as ff

import pandas as pd

scope = ['Oregon']
df_sample = pd.read_csv(
    'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
)
df_sample_r = df_sample[df_sample['STNAME'].isin(scope)]

values = df_sample_r['TOT_POP'].tolist()
fips = df_sample_r['FIPS'].tolist()

colorscale = ["#8dd3c7", "#ffffb3", "#bebada", "#fb8072",
              "#80b1d3", "#fdb462", "#b3de69", "#fccde5",
              "#d9d9d9", "#bc80bd", "#ccebc5", "#ffed6f",
              "#8dd3c7", "#ffffb3", "#bebada", "#fb8072",
              "#80b1d3", "#fdb462", "#b3de69", "#fccde5",
              "#d9d9d9", "#bc80bd", "#ccebc5", "#ffed6f",
              "#8dd3c7", "#ffffb3", "#bebada", "#fb8072",
              "#80b1d3", "#fdb462", "#b3de69", "#fccde5",
              "#d9d9d9", "#bc80bd", "#ccebc5", "#ffed6f"]

fig = ff.create_choropleth(
    fips=fips, values=values, scope=scope,
    colorscale=colorscale, round_legend_values=True,
    simplify_county=0, simplify_state=0,
    county_outline={'color': 'rgb(15, 15, 55)', 'width': 0.5},
    state_outline={'width': 1},
    legend_title='pop. per county',
    title='Oregon'
)

fig.layout.template = None
fig.show()

The Entire USA

In [7]:
import plotly.figure_factory as ff

import numpy as np
import pandas as pd

df_sample = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv')
df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply(lambda x: str(x).zfill(2))
df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply(lambda x: str(x).zfill(3))
df_sample['FIPS'] = df_sample['State FIPS Code'] + df_sample['County FIPS Code']

colorscale = ["#f7fbff","#ebf3fb","#deebf7","#d2e3f3","#c6dbef","#b3d2e9","#9ecae1",
              "#85bcdb","#6baed6","#57a0ce","#4292c6","#3082be","#2171b5","#1361a9",
              "#08519c","#0b4083","#08306b"]
endpts = list(np.linspace(1, 12, len(colorscale) - 1))
fips = df_sample['FIPS'].tolist()
values = df_sample['Unemployment Rate (%)'].tolist()

fig = ff.create_choropleth(
    fips=fips, values=values,
    binning_endpoints=endpts,
    colorscale=colorscale,
    show_state_data=False,
    show_hover=True, centroid_marker={'opacity': 0},
    asp=2.9, title='USA by Unemployment %',
    legend_title='% unemployed'
)

fig.layout.template = None
fig.show()

Also see tile county choropleths made in Python: https://plotly.com/python/tile-county-choropleth/

Reference

For more info on ff.create_choropleth(), see the full function reference

What About Dash?

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )

from dash import Dash, dcc, html

app = Dash()
app.layout = html.Div([
    dcc.Graph(figure=fig)
])

app.run_server(debug=True, use_reloader=False)  # Turn off reloader if inside Jupyter