Black Lives Matter. Please consider donating to Black Girls Code today.

# Parallel Coordinates Plot in R

How to create parallel coordinates plots in R with Plotly.

Building AI apps or dashboards in R? Deploy them to Dash Enterprise for hyper-scalability and pixel-perfect aesthetic.
10% of the Fortune 500 uses Dash Enterprise to productionize AI & data science apps. Find out if your company is using Dash Enterprise

New to Plotly?

Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

library(plotly)

fig <- plot_ly(type = 'parcoords', line = list(color = 'blue'),
dimensions = list(
list(range = c(1,5),
constraintrange = c(1,2),
label = 'A', values = c(1,4)),
list(range = c(1,5),
tickvals = c(1.5,3,4.5),
label = 'B', values = c(3,1.5)),
list(range = c(1,5),
tickvals = c(1,2,4,5),
label = 'C', values = c(2,4),
ticktext = c('text 1', 'text 2', 'text 3', 'text 4')),
list(range = c(1,5),
label = 'D', values = c(4,2))
)
)

fig


### Basic Parallel Cordinates Plot

library(plotly)

fig <- df %>% plot_ly(type = 'parcoords',
line = list(color = ~species_id,
colorscale = list(c(0,'red'),c(0.5,'green'),c(1,'blue'))),
dimensions = list(
list(range = c(2,4.5),
label = 'Sepal Width', values = ~sepal_width),
list(range = c(4,8),
constraintrange = c(5,6),
label = 'Sepal Length', values = ~sepal_length),
list(range = c(0,2.5),
label = 'Petal Width', values = ~petal_width),
list(range = c(1,7),
label = 'Petal Length', values = ~petal_length)
)
)

fig


library(plotly)

fig <- df %>%
plot_ly(width = 1000, height = 600)
fig <- fig %>% add_trace(type = 'parcoords',
line = list(color = ~colorVal,
colorscale = 'Jet',
showscale = TRUE,
reversescale = TRUE,
cmin = -4000,
cmax = -100),
dimensions = list(
list(range = c(~min(blockHeight),~max(blockHeight)),
constraintrange = c(100000,150000),
label = 'Block Height', values = ~blockHeight),
list(range = c(~min(blockWidth),~max(blockWidth)),
label = 'Block Width', values = ~blockWidth),
list(tickvals = c(0,0.5,1,2,3),
ticktext = c('A','AB','B','Y','Z'),
label = 'Cyclinder Material', values = ~cycMaterial),
list(range = c(-1,4),
tickvals = c(0,1,2,3),
label = 'Block Material', values = ~blockMaterial),
list(range = c(~min(totalWeight),~max(totalWeight)),
visible = TRUE,
label = 'Total Weight', values = ~totalWeight),
list(range = c(~min(assemblyPW),~max(assemblyPW)),
label = 'Assembly Penalty Weight', values = ~assemblyPW),
list(range = c(~min(HstW),~max(HstW)),
label = 'Height st Width', values = ~HstW),
list(range = c(~min(minHW),~max(minHW)),
label = 'Min Height Width', values = ~minHW),
list(range = c(~min(minWD),~max(minWD)),
label = 'Min Width Diameter', values = ~minWD),
list(range = c(~min(rfBlock),~max(rfBlock)),
label = 'RF Block', values = ~rfBlock)
)
)

fig


# Reference

Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash for R at https://dashr.plot.ly/installation.

Everywhere in this page that you see fig, you can display the same figure in a Dash for R application by passing it to the figure argument of the Graph component from the built-in dashCoreComponents package like this:

library(plotly)

fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )

library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new() app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
) 