Choropleth Maps in R
How to make a choropleth map in R. A choropleth map shades geographic regions by value.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
A Choropleth Map is a map composed of colored polygons. It is used to represent spatial variations of a quantity. This page documents how to build outline choropleth maps, but you can also build choropleth tile maps using our Mapbox trace types.
Base Map Configuration
Plotly figures made with plot_ly
have a layout.geo
object which can be used to control the appearance of the base map onto which data is plotted.
Introduction: main parameters for choropleth outline maps
Making choropleth maps requires two main types of input:
- Geometry information:
- This can either be a supplied GeoJSON file where each feature has either an
id
field or some identifying value inproperties
; or - one of the built-in geometries within
plot_ly
: US states and world countries (see below)
- This can either be a supplied GeoJSON file where each feature has either an
- A list of values indexed by feature identifier.
The GeoJSON data is passed to the geojson
argument, and the data is passed into the z
argument of choropleth traces.
Note the geojson
attribute can also be the URL to a GeoJSON file, which can speed up map rendering in certain cases.
GeoJSON with feature.id
Here we load a GeoJSON file containing the geometry information for US counties, where feature.id
is a FIPS code.
library(plotly)
library(rjson)
data <- fromJSON(file="https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json")
data$features[[1]]
## $type
## [1] "Feature"
##
## $properties
## $properties$GEO_ID
## [1] "0500000US01001"
##
## $properties$STATE
## [1] "01"
##
## $properties$COUNTY
## [1] "001"
##
## $properties$NAME
## [1] "Autauga"
##
## $properties$LSAD
## [1] "County"
##
## $properties$CENSUSAREA
## [1] 594.436
##
##
## $geometry
## $geometry$type
## [1] "Polygon"
##
## $geometry$coordinates
## $geometry$coordinates[[1]]
## $geometry$coordinates[[1]][[1]]
## [1] -86.49677 32.34444
##
## $geometry$coordinates[[1]][[2]]
## [1] -86.71790 32.40281
##
## $geometry$coordinates[[1]][[3]]
## [1] -86.81491 32.34080
##
## $geometry$coordinates[[1]][[4]]
## [1] -86.89058 32.50297
##
## $geometry$coordinates[[1]][[5]]
## [1] -86.91760 32.66417
##
## $geometry$coordinates[[1]][[6]]
## [1] -86.71339 32.66173
##
## $geometry$coordinates[[1]][[7]]
## [1] -86.71422 32.70569
##
## $geometry$coordinates[[1]][[8]]
## [1] -86.41312 32.70739
##
## $geometry$coordinates[[1]][[9]]
## [1] -86.41117 32.40994
##
## $geometry$coordinates[[1]][[10]]
## [1] -86.49677 32.34444
##
##
##
##
## $id
## [1] "01001"
Data indexed by id
Here we load unemployment data by county, also indexed by FIPS code.
df = read.csv("https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv", header = T, colClasses = c("fips"="character"))
head(df)
## fips unemp
## 1 01001 5.3
## 2 01003 5.4
## 3 01005 8.6
## 4 01007 6.6
## 5 01009 5.5
## 6 01011 7.2
Choropleth Map Using GeoJSON
library(plotly)
library(rjson)
url <- 'https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json'
counties <- rjson::fromJSON(file=url)
url2<- "https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv"
df <- read.csv(url2, colClasses=c(fips="character"))
g <- list(
scope = 'usa',
projection = list(type = 'albers usa'),
showlakes = TRUE,
lakecolor = toRGB('white')
)
fig <- plot_ly()
fig <- fig %>% add_trace(
type="choropleth",
geojson=counties,
locations=df$fips,
z=df$unemp,
colorscale="Viridis",
zmin=0,
zmax=12,
marker=list(line=list(
width=0)
)
)
fig <- fig %>% colorbar(title = "Unemployment Rate (%)")
fig <- fig %>% layout(
title = "2016 US Unemployment by County"
)
fig <- fig %>% layout(
geo = g
)
fig