Aggregations in Python/v3
How to use aggregates in Python with Plotly.
Note: this page is part of the documentation for version 3 of Plotly.py, which is not the most recent version.
See our Version 4 Migration Guide for information about how to upgrade.
See our Version 4 Migration Guide for information about how to upgrade.
New to Plotly?¶
Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
Version Check¶
Plotly's python package is updated frequently. Run pip install plotly --upgrade
to use the latest version.
In [1]:
import plotly
plotly.__version__
Out[1]:
Introduction¶
Aggregates are a type of transform that can be applied to values in a given expression. Available aggregations are:
Function | Description |
---|---|
count |
Returns the quantity of items for each group. |
sum |
Returns the summation of all numeric values. |
avg |
Returns the average of all numeric values. |
median |
Returns the median of all numeric values. |
mode |
Returns the mode of all numeric values. |
rms |
Returns the rms of all numeric values. |
stddev |
Returns the standard deviation of all numeric values. |
min |
Returns the minimum numeric value for each group. |
max |
Returns the maximum numeric value for each group. |
first |
Returns the first numeric value for each group. |
last |
Returns the last numeric value for each group. |
Basic Example¶
In [2]:
import plotly.offline as off
off.init_notebook_mode(connected=False)
subject = ['Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly']
score = [1,6,2,8,2,9,4,5,1,5,2,8]
data = [dict(
type = 'scatter',
x = subject,
y = score,
mode = 'markers',
transforms = [dict(
type = 'aggregate',
groups = subject,
aggregations = [dict(
target = 'y', func = 'sum', enabled = True),
]
)]
)]
off.iplot({'data': data}, validate=False)
Aggregate Functions¶
In [3]:
import plotly.offline as off
off.init_notebook_mode(connected=False)
subject = ['Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly']
score = [1,6,2,8,2,9,4,5,1,5,2,8]
aggs = ["count","sum","avg","median","mode","rms","stddev","min","max","first","last"]
agg = []
agg_func = []
for i in range(0, len(aggs)):
agg = dict(
args=['transforms[0].aggregations[0].func', aggs[i]],
label=aggs[i],
method='restyle'
)
agg_func.append(agg)
data = [dict(
type = 'scatter',
x = subject,
y = score,
mode = 'markers',
transforms = [dict(
type = 'aggregate',
groups = subject,
aggregations = [dict(
target = 'y', func = 'sum', enabled = True)
]
)]
)]
layout = dict(
title = '<b>Plotly Aggregations</b><br>use dropdown to change aggregation',
xaxis = dict(title = 'Subject'),
yaxis = dict(title = 'Score', range = [0,22]),
updatemenus = [dict(
x = 0.85,
y = 1.15,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
active = 1,
showactive = False,
buttons = agg_func
)]
)
off.iplot({'data': data,'layout': layout}, validate=False)
Histogram Binning¶
In [4]:
import plotly.offline as off
import pandas as pd
off.init_notebook_mode(connected=False)
df = pd.read_csv("https://plotly.com/~public.health/17.csv")
data = [dict(
x = df['date'],
autobinx = False,
autobiny = True,
marker = dict(color = 'rgb(68, 68, 68)'),
name = 'date',
type = 'histogram',
xbins = dict(
end = '2016-12-31 12:00',
size = 'M1',
start = '1983-12-31 12:00'
)
)]
layout = dict(
paper_bgcolor = 'rgb(240, 240, 240)',
plot_bgcolor = 'rgb(240, 240, 240)',
title = '<b>Shooting Incidents</b>',
xaxis = dict(
title = '',
type = 'date'
),
yaxis = dict(
title = 'Shootings Incidents',
type = 'linear'
),
updatemenus = [dict(
x = 0.1,
y = 1.15,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
active = 1,
showactive = True,
buttons = [
dict(
args = ['xbins.size', 'D1'],
label = 'Day',
method = 'restyle',
), dict(
args = ['xbins.size', 'M1'],
label = 'Month',
method = 'restyle',
), dict(
args = ['xbins.size', 'M3'],
label = 'Quater',
method = 'restyle',
), dict(
args = ['xbins.size', 'M6'],
label = 'Half Year',
method = 'restyle',
), dict(
args = ['xbins.size', 'M12'],
label = 'Year',
method = 'restyle',
)]
)]
)
off.iplot({'data': data,'layout': layout}, validate=False)
Mapping with Aggregates¶
In [5]:
import plotly.offline as off
import pandas as pd
off.init_notebook_mode(connected=False)
df = pd.read_csv("https://raw.githubusercontent.com/bcdunbar/datasets/master/worldhappiness.csv")
aggs = ["count","sum","avg","median","mode","rms","stddev","min","max","first","last"]
agg = []
agg_func = []
for i in range(0, len(aggs)):
agg = dict(
args=['transforms[0].aggregations[0].func', aggs[i]],
label=aggs[i],
method='restyle'
)
agg_func.append(agg)
data = [dict(
type = 'choropleth',
locationmode = 'country names',
locations = df['Country'],
z = df['HappinessScore'],
autocolorscale = False,
colorscale = 'Portland',
reversescale = True,
transforms = [dict(
type = 'aggregate',
groups = df['Country'],
aggregations = [dict(
target = 'z', func = 'sum', enabled = True)
]
)]
)]
layout = dict(
title = '<b>Plotly Aggregations</b><br>use dropdown to change aggregation',
xaxis = dict(title = 'Subject'),
yaxis = dict(title = 'Score', range = [0,22]),
height = 600,
width = 900,
updatemenus = [dict(
x = 0.85,
y = 1.15,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
active = 1,
showactive = False,
buttons = agg_func
)]
)
off.iplot({'data': data,'layout': layout}, validate=False)
Reference¶
See https://plotly.com/python/reference/ for more information and chart attribute options!
