Multiple Transforms in Python
How to use multiple transforms (filter, group by, and aggregates) in Python with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Note
transforms
are deprecated inplotly
v5 and will be removed in a future version.Filter and Group By¶
import plotly.io as pio
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv")
colors = ['blue', 'orange', 'green', 'red', 'purple']
opt = []
opts = []
for i in range(0, len(colors)):
opt = dict(
target = df['continent'][[i]].unique(), value = dict(marker = dict(color = colors[i]))
)
opts.append(opt)
data = [dict(
type = 'scatter',
mode = 'markers',
x = df['lifeExp'],
y = df['gdpPercap'],
text = df['continent'],
hoverinfo = 'text',
opacity = 0.8,
marker = dict(
size = df['pop'],
sizemode = 'area',
sizeref = 200000
),
transforms = [
dict(
type = 'filter',
target = df['year'],
orientation = '=',
value = 2007
),
dict(
type = 'groupby',
groups = df['continent'],
styles = opts
)]
)]
layout = dict(
yaxis = dict(
type = 'log'
)
)
fig_dict = dict(data=data, layout=layout)
pio.show(fig_dict, validate=False)
Filter and Aggregate¶
import plotly.io as pio
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv")
data = [dict(
type = 'scatter',
mode = 'markers',
x = df['lifeExp'],
y = df['gdpPercap'],
text = df['continent'],
hoverinfo = 'text',
opacity = 0.8,
marker = dict(
size = df['pop'],
sizemode = 'area',
sizeref = 200000
),
transforms = [
dict(
type = 'filter',
target = df['year'],
orientation = '=',
value = 2007
),
dict(
type = 'aggregate',
groups = df['continent'],
aggregations = [
dict(target = 'x', func = 'avg'),
dict(target = 'y', func = 'avg'),
dict(target = 'marker.size', func = 'sum')
]
)]
)]
layout = dict(
yaxis = dict(
type = 'log'
)
)
fig_dict = dict(data=data, layout=layout)
pio.show(fig_dict, validate=False)
All Transforms¶
import plotly.io as pio
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv")
colors = ['blue', 'orange', 'green', 'red', 'purple']
opt = []
opts = []
for i in range(0, len(colors)):
opt = dict(
target = df['continent'][[i]].unique(), value = dict(marker = dict(color = colors[i]))
)
opts.append(opt)
data = [dict(
type = 'scatter',
mode = 'markers',
x = df['lifeExp'],
y = df['gdpPercap'],
text = df['continent'],
hoverinfo = 'text',
opacity = 0.8,
marker = dict(
size = df['pop'],
sizemode = 'area',
sizeref = 200000
),
transforms = [
dict(
type = 'filter',
target = df['year'],
orientation = '=',
value = 2007
),
dict(
type = 'groupby',
groups = df['continent'],
styles = opts
),
dict(
type = 'aggregate',
groups = df['continent'],
aggregations = [
dict(target = 'x', func = 'avg'),
dict(target = 'y', func = 'avg'),
dict(target = 'marker.size', func = 'sum')
]
)]
)]
layout = dict(
title = '<b>Gapminder</b><br>2007 Average GDP Per Cap & Life Exp. by Continent',
yaxis = dict(
type = 'log'
)
)
fig_dict = dict(data=data, layout=layout)
pio.show(fig_dict, validate=False)
Reference¶
See https://plotly.com/python/reference/ for more information and chart attribute options!
What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )
from dash import Dash, dcc, html
app = Dash()
app.layout = html.Div([
dcc.Graph(figure=fig)
])
app.run_server(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter