Aggregations in Python
How to use aggregates in Python with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Note
transforms
are deprecated inplotly
v5 and will be removed in a future version.
Introduction¶
Aggregates are a type of transform that can be applied to values in a given expression. Available aggregations are:
Function | Description |
---|---|
count |
Returns the quantity of items for each group. |
sum |
Returns the summation of all numeric values. |
avg |
Returns the average of all numeric values. |
median |
Returns the median of all numeric values. |
mode |
Returns the mode of all numeric values. |
rms |
Returns the rms of all numeric values. |
stddev |
Returns the standard deviation of all numeric values. |
min |
Returns the minimum numeric value for each group. |
max |
Returns the maximum numeric value for each group. |
first |
Returns the first numeric value for each group. |
last |
Returns the last numeric value for each group. |
Basic Example¶
import plotly.io as pio
subject = ['Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly']
score = [1,6,2,8,2,9,4,5,1,5,2,8]
data = [dict(
type = 'scatter',
x = subject,
y = score,
mode = 'markers',
transforms = [dict(
type = 'aggregate',
groups = subject,
aggregations = [dict(
target = 'y', func = 'sum', enabled = True),
]
)]
)]
fig_dict = dict(data=data)
pio.show(fig_dict, validate=False)
Aggregate Functions¶
import plotly.io as pio
subject = ['Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly','Moe','Larry','Curly']
score = [1,6,2,8,2,9,4,5,1,5,2,8]
aggs = ["count","sum","avg","median","mode","rms","stddev","min","max","first","last"]
agg = []
agg_func = []
for i in range(0, len(aggs)):
agg = dict(
args=['transforms[0].aggregations[0].func', aggs[i]],
label=aggs[i],
method='restyle'
)
agg_func.append(agg)
data = [dict(
type = 'scatter',
x = subject,
y = score,
mode = 'markers',
transforms = [dict(
type = 'aggregate',
groups = subject,
aggregations = [dict(
target = 'y', func = 'sum', enabled = True)
]
)]
)]
layout = dict(
title = '<b>Plotly Aggregations</b><br>use dropdown to change aggregation',
xaxis = dict(title = 'Subject'),
yaxis = dict(title = 'Score', range = [0,22]),
updatemenus = [dict(
x = 0.85,
y = 1.15,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
active = 1,
showactive = False,
buttons = agg_func
)]
)
fig_dict = dict(data=data, layout=layout)
pio.show(fig_dict, validate=False)
Histogram Binning¶
import plotly.io as pio
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/US-shooting-incidents.csv")
data = [dict(
x = df['date'],
autobinx = False,
autobiny = True,
marker = dict(color = 'rgb(68, 68, 68)'),
name = 'date',
type = 'histogram',
xbins = dict(
end = '2016-12-31 12:00',
size = 'M1',
start = '1983-12-31 12:00'
)
)]
layout = dict(
paper_bgcolor = 'rgb(240, 240, 240)',
plot_bgcolor = 'rgb(240, 240, 240)',
title = '<b>Shooting Incidents</b>',
xaxis = dict(
title = '',
type = 'date'
),
yaxis = dict(
title = 'Shootings Incidents',
type = 'linear'
),
updatemenus = [dict(
x = 0.1,
y = 1.15,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
active = 1,
showactive = True,
buttons = [
dict(
args = ['xbins.size', 'D1'],
label = 'Day',
method = 'restyle',
), dict(
args = ['xbins.size', 'M1'],
label = 'Month',
method = 'restyle',
), dict(
args = ['xbins.size', 'M3'],
label = 'Quarter',
method = 'restyle',
), dict(
args = ['xbins.size', 'M6'],
label = 'Half Year',
method = 'restyle',
), dict(
args = ['xbins.size', 'M12'],
label = 'Year',
method = 'restyle',
)]
)]
)
fig_dict = dict(data=data, layout=layout)
pio.show(fig_dict, validate=False)
Mapping with Aggregates¶
import plotly.io as pio
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/bcdunbar/datasets/master/worldhappiness.csv")
aggs = ["count","sum","avg","median","mode","rms","stddev","min","max","first","last"]
agg = []
agg_func = []
for i in range(0, len(aggs)):
agg = dict(
args=['transforms[0].aggregations[0].func', aggs[i]],
label=aggs[i],
method='restyle'
)
agg_func.append(agg)
data = [dict(
type = 'choropleth',
locationmode = 'country names',
locations = df['Country'],
z = df['HappinessScore'],
autocolorscale = False,
colorscale = 'Portland',
reversescale = True,
transforms = [dict(
type = 'aggregate',
groups = df['Country'],
aggregations = [dict(
target = 'z', func = 'sum', enabled = True)
]
)]
)]
layout = dict(
title = '<b>Plotly Aggregations</b><br>use dropdown to change aggregation',
xaxis = dict(title = 'Subject'),
yaxis = dict(title = 'Score', range = [0,22]),
height = 600,
width = 900,
updatemenus = [dict(
x = 0.85,
y = 1.15,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
active = 1,
showactive = False,
buttons = agg_func
)]
)
fig_dict = dict(data=data, layout=layout)
pio.show(fig_dict, validate=False)
Reference¶
See https://plotly.com/python/reference/ for more information and chart attribute options!
What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )
from dash import Dash, dcc, html
app = Dash()
app.layout = html.Div([
dcc.Graph(figure=fig)
])
app.run_server(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter