Filled Area Plots in R

How to make a filled area plot in R. An area chart displays a solid color between the traces of a graph.


New to Plotly?

Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

Basic Filled Area Plot

To make an area plot with interior filling set fill to "tozeroy" in the call for the second trace. For more informations and options about the fill option checkout https://plotly.com/r/reference/#scatter-fill

library(plotly)

density <- density(diamonds$carat)

fig <- plot_ly(x = ~density$x, y = ~density$y, type = 'scatter', mode = 'lines', fill = 'tozeroy')
fig <- fig %>% layout(xaxis = list(title = 'Carat'),
         yaxis = list(title = 'Density'))

fig

Filled Area Plot with Multiple Traces

To make a filled area plot set fill to "tozeroy".

library(plotly)

diamonds1 <- diamonds[which(diamonds$cut == "Fair"),]
density1 <- density(diamonds1$carat)

diamonds2 <- diamonds[which(diamonds$cut == "Ideal"),]
density2 <- density(diamonds2$carat)

fig <- plot_ly(x = ~density1$x, y = ~density1$y, type = 'scatter', mode = 'lines', name = 'Fair cut', fill = 'tozeroy')
fig <- fig %>% add_trace(x = ~density2$x, y = ~density2$y, name = 'Ideal cut', fill = 'tozeroy')
fig <- fig %>% layout(xaxis = list(title = 'Carat'),
         yaxis = list(title = 'Density'))

fig

Selecting Hover Points

library(plotly)

fig <- plot_ly()
fig <- fig %>% add_trace(
    x = c(0,0.5,1,1.5,2),
    y = c(0,1,2,1,0),
    type = 'scatter',
    fill = 'toself',
    fillcolor = '#ab63fa',
    hoveron = 'points+fills',
    marker = list(
      color = '#ab63fa'
    ),
    line = list(
      color = '#ab63fa'
    ),
    text = "Points + Fills",
    hoverinfo = 'text'
  )
fig <- fig %>% add_trace(
    x = c(3,3.5,4,4.5,5),
    y = c(0,1,2,1,0),
    type = 'scatter',
    fill = 'toself',
    fillcolor = '#e763fa',
    hoveron = 'points',
    marker = list(
      color = '#e763fa'
    ),
    line = list(
      color = '#e763fa'
    ),
    text = "Points only",
    hoverinfo = 'text'
  )
fig <- fig %>% layout(
    title = "hover on <i>points</i> or <i>fill</i>",
    xaxis = list(
      range = c(0,5.2)
    ),
    yaxis = list(
      range = c(0,3)
    )
  )

fig
01234500.511.522.53
#ab63fa#e763fahover on points or fill

Custom Colors

library(plotly)

diamonds1 <- diamonds[which(diamonds$cut == "Fair"),]
density1 <- density(diamonds1$carat)

diamonds2 <- diamonds[which(diamonds$cut == "Ideal"),]
density2 <- density(diamonds2$carat)

fig <- plot_ly(x = ~density1$x, y = ~density1$y, type = 'scatter', mode = 'lines', name = 'Fair cut', fill = 'tozeroy',
        fillcolor = 'rgba(168, 216, 234, 0.5)',
        line = list(width = 0.5))
fig <- fig %>% add_trace(x = ~density2$x, y = ~density2$y, name = 'Ideal cut', fill = 'tozeroy',
            fillcolor = 'rgba(255, 212, 96, 0.5)')
fig <- fig %>% layout(xaxis = list(title = 'Carat'),
         yaxis = list(title = 'Density'))

fig

Area Plot without Lines

To make an area plot without lines set mode to "none".

library(plotly)

diamonds1 <- diamonds[which(diamonds$cut == "Fair"),]
density1 <- density(diamonds1$carat)

diamonds2 <- diamonds[which(diamonds$cut == "Ideal"),]
density2 <- density(diamonds2$carat)

fig <- plot_ly(x = ~density1$x, y = ~density1$y, type = 'scatter', mode = 'none', name = 'Fair cut', fill = 'tozeroy',
        fillcolor = 'rgba(168, 216, 234, 0.5)')
fig <- fig %>% add_trace(x = ~density2$x, y = ~density2$y, name = 'Ideal cut', fill = 'tozeroy',
            fillcolor = 'rgba(255, 212, 96, 0.5)')
fig <- fig %>% layout(xaxis = list(title = 'Carat'),
         yaxis = list(title = 'Density'))

fig

Interior Filling for Area Chart

To make an area plot with interior filling set fill to "tonexty" in the call for the second trace. For more informations and options about the fill option checkout https://plotly.com/r/reference/#scatter-fill

library(plotly)

month <- c('January', 'February', 'March', 'April', 'May', 'June', 'July',
           'August', 'September', 'October', 'November', 'December')
high_2014 <- c(28.8, 28.5, 37.0, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9)
low_2014 <- c(12.7, 14.3, 18.6, 35.5, 49.9, 58.0, 60.0, 58.6, 51.7, 45.2, 32.2, 29.1)
data <- data.frame(month, high_2014, low_2014)
data$average_2014 <- rowMeans(data[,c("high_2014", "low_2014")])

#The default order will be alphabetized unless specified as below:
data$month <- factor(data$month, levels = data[["month"]])

fig <- plot_ly(data, x = ~month, y = ~high_2014, type = 'scatter', mode = 'lines',
        line = list(color = 'rgba(0,100,80,1)'),
        showlegend = FALSE, name = 'High 2014')
fig <- fig %>% add_trace(y = ~low_2014, type = 'scatter', mode = 'lines',
            fill = 'tonexty', fillcolor='rgba(0,100,80,0.2)', line = list(color = 'rgba(0,100,80,1)'),
            showlegend = FALSE, name = 'Low 2014')
fig <- fig %>% layout(title = "High and Low Temperatures in New York",
         paper_bgcolor='rgb(255,255,255)', plot_bgcolor='rgb(229,229,229)',
         xaxis = list(title = "Months",
                      gridcolor = 'rgb(255,255,255)',
                      showgrid = TRUE,
                      showline = FALSE,
                      showticklabels = TRUE,
                      tickcolor = 'rgb(127,127,127)',
                      ticks = 'outside',
                      zeroline = FALSE),
         yaxis = list(title = "Temperature (degrees F)",
                      gridcolor = 'rgb(255,255,255)',
                      showgrid = TRUE,
                      showline = FALSE,
                      showticklabels = TRUE,
                      tickcolor = 'rgb(127,127,127)',
                      ticks = 'outside',
                      zeroline = FALSE))

fig
JanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecember1020304050607080
High and Low Temperatures in New YorkMonthsTemperature (degrees F)

Stacked Area Chart with Original Values

library(plotly)

data <- t(USPersonalExpenditure)
data <- data.frame("year"=rownames(data), data)

fig <- plot_ly(data, x = ~year, y = ~Food.and.Tobacco, name = 'Food and Tobacco', type = 'scatter', mode = 'none', stackgroup = 'one', fillcolor = '#F5FF8D')
fig <- fig %>% add_trace(y = ~Household.Operation, name = 'Household Operation', fillcolor = '#50CB86')
fig <- fig %>% add_trace(y = ~Medical.and.Health, name = 'Medical and Health', fillcolor = '#4C74C9')
fig <- fig %>% add_trace(y = ~Personal.Care, name = 'Personal Care', fillcolor = '#700961')
fig <- fig %>% add_trace(y = ~Private.Education, name = 'Private Education', fillcolor = '#312F44')
fig <- fig %>% layout(title = 'United States Personal Expenditures by Categories',
         xaxis = list(title = "",
                      showgrid = FALSE),
         yaxis = list(title = "Expenditures (in billions of dollars)",
                      showgrid = FALSE))

fig
19401945195019551960020406080100120140160
Private EducationPersonal CareMedical and HealthHousehold OperationFood and TobaccoUnited States Personal Expenditures by CategoriesExpenditures (in billions of dollars)

Stacked Area Chart with Cumulative Values

library(plotly)

data <- t(USPersonalExpenditure)
data <- data.frame("year"=rownames(data), data)

fig <- plot_ly(data, x = ~year, y = ~Food.and.Tobacco, name = 'Food and Tobacco', type = 'scatter', mode = 'none', stackgroup = 'one', groupnorm = 'percent', fillcolor = '#F5FF8D')
fig <- fig %>% add_trace(y = ~Household.Operation, name = 'Household Operation', fillcolor = '#50CB86')
fig <- fig %>% add_trace(y = ~Medical.and.Health, name = 'Medical and Health', fillcolor = '#4C74C9')
fig <- fig %>% add_trace(y = ~Personal.Care, name = 'Personal Care', fillcolor = '#700961')
fig <- fig %>% add_trace(y = ~Private.Education, name = 'Private Education', fillcolor = '#312F44')
fig <- fig %>% layout(title = 'United States Personal Expenditures by Categories',
         xaxis = list(title = "",
                      showgrid = FALSE),
         yaxis = list(title = "Proportion from the Total Expenditures",
                      showgrid = FALSE,
                      ticksuffix = '%'))

fig
194019451950195519600%20%40%60%80%100%
Private EducationPersonal CareMedical and HealthHousehold OperationFood and TobaccoUnited States Personal Expenditures by CategoriesProportion from the Total Expenditures

Reference

See https://plotly.com/r/reference/#area for more information and chart attribute options!

What About Dash?

Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash for R at https://dashr.plot.ly/installation.

Everywhere in this page that you see fig, you can display the same figure in a Dash for R application by passing it to the figure argument of the Graph component from the built-in dashCoreComponents package like this:

library(plotly)

fig <- plot_ly() 
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... ) 

library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()
app$layout(
    htmlDiv(
        list(
            dccGraph(figure=fig) 
        )
     )
)

app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)