Distplots in R

How to make interactive Distplots in R with Plotly.


Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.

Combined statistical representations with histogram

Several representations of statistical distributions are available in plotly, such as histograms, violin plots, box plots (see the complete list here). It is also possible to combine several representations in the same plot.

library(plotly)
library(ggplot2)
library(reshape2)
data(tips)

p <- ggplot(tips, aes(x=total_bill, weight = tip, color=sex, fill = sex)) +
  geom_histogram(binwidth=2.5) +
  ylab("sum of tip") + 
  geom_rug(sides="t", length = unit(0.3, "cm"))
fig <- ggplotly(p)
fig

Combined statistical representations with distplot figure factory

The distplot figure factory displays a combination of statistical representations of numerical data, such as histogram, kernel density estimation or normal curve, and rug plot.

Basic Distplot

A histogram, a kde plot and a rug plot are displayed.

library(ggplot2)  
library(plotly)

set.seed(1)    
hist_data <- data.frame(rnorm(1000, mean = 0, sd = 1))   
colnames(hist_data) = c('x')  
gg <- ggplot(hist_data,aes(x = x, color = 'density')) +  
  geom_histogram(aes(y = ..density..), bins = 7,  fill = '#67B7D1', alpha = 0.5) +  
  geom_density(color = '#67B7D1') +  
  geom_rug(color = '#67B7D1') + 
  ylab("") + 
  xlab("")  + theme(legend.title=element_blank()) +
  scale_color_manual(values = c('density' = '#67B7D1'))


ggplotly(gg)%>% 
  layout(plot_bgcolor='#e5ecf6',   
             xaxis = list(   
               title='Time', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),   
             yaxis = list(   
               title='Value A', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff')) 

Plot Multiple Datasets

library(ggplot2)    
library(plotly) 
set.seed(1)    
x1 <- rnorm(200, mean = 0, sd = 1) - 2  
x2 <- rnorm(200, mean = 0, sd = 1)   
x3 <- rnorm(200, mean = 0, sd = 1) + 2  
x4 <- rnorm(200, mean = 0, sd = 1) +4  
group_labels = c('Group 1', 'Group 2', 'Group 3', 'Group 4')  

df1 <- data.frame(x1, group_labels[1])  
colnames(df1) <- c('x', 'Group') 
df2 <- data.frame(x2, group_labels[2]) 
colnames(df2) <- c('x', 'Group') 
df3 <- data.frame(x3, group_labels[3]) 
colnames(df3) <- c('x', 'Group') 
df4 <- data.frame(x4, group_labels[4]) 
colnames(df4) <- c('x', 'Group') 
df <- rbind(df1,df2,df3,df4) 
colnames(df) <- c('x', 'Group') 

gg <- ggplot(data = df ) +  
  geom_histogram(aes(x=x, y = ..density.., fill=Group),bins = 29, alpha = 0.7) + 
 geom_density(aes(x=x, color=Group)) + geom_rug(aes(x=x, color=Group))+ 
  ylab("") + 
  xlab("")


ggplotly(gg)%>% 
  layout(plot_bgcolor='#e5ecf6',   
             xaxis = list(   
               title='Time', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),   
             yaxis = list(   
               title='Value A', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff')) 

Use Multiple Bin Sizes

Different bin sizes are used for the different datasets with the bin_size argument.

library(ggplot2) 
library(plotly)

set.seed(1)  
x1 <- rnorm(1000, mean = 0, sd = 1) - 2
x2 <- rnorm(1000, mean = 0, sd = 1) 
x3 <- rnorm(1000, mean = 0, sd = 1) + 2
x4 <- rnorm(1000, mean = 0, sd = 1) +4
group_labels = c('Group 1', 'Group 2', 'Group 3', 'Group 4')

df = data.frame(x1,x2,x3,x4, group_labels)

gg <- ggplot(df,aes() ) + 
  geom_histogram(aes(x = x1, y = ..density.., fill = '#67B7D1'), alpha = 0.7, bins = 29) +
  geom_histogram(aes(x = x2, y = ..density.., fill = '#ff8080'), alpha = 0.7, bins = 20) +
  geom_histogram(aes(x = x3, y = ..density.., fill = '#ff99dd'), alpha = 0.7, bins = 10) +
  geom_histogram(aes(x = x4, y = ..density.., fill = '#ff9900'), alpha = 0.7, bins = 5) +
  geom_density(aes(x = x1),color = '#67B7D1') + 
  geom_density(aes(x = x2),color = '#ff8080') +
  geom_density(aes(x = x3),color = '#ff99dd') +
  geom_density(aes(x = x4),color = '#ff9900') +
  geom_rug(aes(x = x1),color = '#67B7D1') + 
  geom_rug(aes(x = x2),color = '#ff8080') +
  geom_rug(aes(x = x3),color = '#ff99dd') +
  geom_rug(aes(x = x4),color = '#ff9900') + 
  theme(legend.title=element_blank()) +
  scale_fill_identity(labels = c('Group 1', 'Group 2', 'Group 3', 'Group 4'),
                      guide = "legend")  +
  labs(x = '',
       y = '')

ggplotly(gg)%>% 
  layout(plot_bgcolor='#e5ecf6',   
             xaxis = list(   
               title='Time', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),   
             yaxis = list(   
               title='Value A', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff')) 

Plot Normal Curve

library(ggplot2)    
library(plotly) 
set.seed(1)    
x1 <- rnorm(200, mean = 0, sd = 1)  
x2 <- rnorm(200, mean = 0, sd = 1) + 2 

group_labels = c('Group 1', 'Group 2')  

df1 <- data.frame(x1, group_labels[1])  
colnames(df1) <- c('x', 'Group') 
df2 <- data.frame(x2, group_labels[2]) 
colnames(df2) <- c('x', 'Group') 

df <- rbind(df1,df2) 
colnames(df) <- c('x', 'Group') 

gg <- ggplot(data = df , aes(x=x)) +  
  geom_histogram(aes(y = ..density.., fill=Group),bins = 30, alpha = 0.7)+ 
  geom_density(aes(color=Group))+  
  geom_rug(aes(color=Group))+ 
  labs(x = '',  
       y = '',  
       title = 'Distplot with Normal Distribution')  

ggplotly(gg)%>% 
  layout(plot_bgcolor='#e5ecf6',   
             xaxis = list(   
               title='Time', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),   
             yaxis = list(   
               title='Value A', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff')) 

Plot Only Curve and Rug

library(ggplot2)    
library(plotly) 
set.seed(1)    
x1 <- rnorm(200, mean = 0, sd = 1) - 1
x2 <- rnorm(200, mean = 0, sd = 1) 
x3 <- rnorm(200, mean = 0, sd = 1) + 1

group_labels = c('Group 1', 'Group 2', 'Group 3')  

df1 <- data.frame(x1, group_labels[1])  
colnames(df1) <- c('x', 'Group') 
df2 <- data.frame(x2, group_labels[2]) 
colnames(df2) <- c('x', 'Group') 
df3 <- data.frame(x3, group_labels[3]) 
colnames(df3) <- c('x', 'Group') 

df <- rbind(df1,df2,df3) 
colnames(df) <- c('x', 'Group') 

gg <- ggplot(data = df ) +  
 geom_density(aes(x=x, color=Group)) + geom_rug(aes(x=x, color=Group)) + 
  ylab("") + 
  xlab("")

ggplotly(gg)%>% 
  layout(plot_bgcolor='#e5ecf6',   
             xaxis = list(   
               title='Time', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),   
             yaxis = list(   
               title='Value A', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),
         title = 'Curve and Rug Plot') 

Plot Only Hist and Rug

library(ggplot2)    
library(plotly) 
set.seed(1)    
x1 <- rnorm(200, mean = 0, sd = 1) - 1
x2 <- rnorm(200, mean = 0, sd = 1) 
x3 <- rnorm(200, mean = 0, sd = 1) + 1

group_labels = c('Group 1', 'Group 2', 'Group 3')  

df1 <- data.frame(x1, group_labels[1])  
colnames(df1) <- c('x', 'Group') 
df2 <- data.frame(x2, group_labels[2]) 
colnames(df2) <- c('x', 'Group') 
df3 <- data.frame(x3, group_labels[3]) 
colnames(df3) <- c('x', 'Group') 

df <- rbind(df1,df2,df3) 
colnames(df) <- c('x', 'Group') 

gg <- ggplot(data = df ) +  
  geom_histogram(aes(x=x, y = ..density.., fill=Group),bins = 29, alpha = 0.7) + 
  geom_rug(aes(x=x, color=Group)) + 
  ylab("") + 
  xlab("")


ggplotly(gg)%>% 
  layout(plot_bgcolor='#e5ecf6',   
             xaxis = list(   
               title='Time', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),   
             yaxis = list(   
               title='Value A', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),
         title = 'Hist and Rug Plot') 

Plot Hist and Rug with Different Bin Sizes

library(ggplot2)  
library(plotly)

set.seed(1) 
x1 <- rnorm(1000, mean = 0, sd = 1) - 2
x2 <- rnorm(1000, mean = 0, sd = 1) 
x3 <- rnorm(1000, mean = 0, sd = 1) + 2

df <- data.frame(x1, x2, x3)

gg <- ggplot(df,aes() ) + 
  geom_histogram(aes(x = x1, y = ..density.., fill = '#67B7D1'), alpha = 0.7, bins = 5) +
  geom_histogram(aes(x = x2, y = ..density.., fill = '#ff8080'), alpha = 0.7, bins = 17) +
  geom_histogram(aes(x = x3, y = ..density.., fill = '#ff99dd'), alpha = 0.7, bins = 29) +
  geom_rug(aes(x = x1),color = '#67B7D1') + 
  geom_rug(aes(x = x2),color = '#ff8080') +
  geom_rug(aes(x = x3),color = '#ff99dd') +
  labs(x = '',
       y = '',
       title = 'Hist and Rug Plot') +
  theme(legend.title=element_blank()) +
  scale_fill_identity(labels = c('Group 1', 'Group 2', 'Group 3'),
                      guide = "legend") 


ggplotly(gg)%>% 
  layout(plot_bgcolor='#e5ecf6',   
             xaxis = list(   
               title='Time', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),   
             yaxis = list(   
               title='Value A', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),
         title = 'Hist and Rug Plot') 

Plot Only Hist and Curve

library(ggplot2)    
library(plotly) 
set.seed(1)    
x1 <- rnorm(200, mean = 0, sd = 1) - 2  
x2 <- rnorm(200, mean = 0, sd = 1)   
x3 <- rnorm(200, mean = 0, sd = 1) + 2  
x4 <- rnorm(200, mean = 0, sd = 1) +4  
group_labels = c('Group 1', 'Group 2', 'Group 3', 'Group 4')  

df1 <- data.frame(x1, group_labels[1])  
colnames(df1) <- c('x', 'Group') 
df2 <- data.frame(x2, group_labels[2]) 
colnames(df2) <- c('x', 'Group') 
df3 <- data.frame(x3, group_labels[3]) 
colnames(df3) <- c('x', 'Group') 
df4 <- data.frame(x4, group_labels[4]) 
colnames(df4) <- c('x', 'Group') 
df <- rbind(df1,df2,df3,df4) 
colnames(df) <- c('x', 'Group') 

gg <- ggplot(data = df ) +  
  geom_histogram(aes(x=x, y = ..density.., fill=Group),bins = 29, alpha = 0.7) + 
 geom_density(aes(x=x, color=Group)) + 
  ylab("") + 
  xlab("")


ggplotly(gg)%>% 
  layout(plot_bgcolor='#e5ecf6',   
             xaxis = list(   
               title='Time', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),   
             yaxis = list(   
               title='Value A', 
               zerolinecolor = '#ffff',   
               zerolinewidth = 2,   
               gridcolor = 'ffff'),
         title = 'Hist and Curve Plot') 

What About Dash?

Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash for R at https://dashr.plot.ly/installation.

Everywhere in this page that you see fig, you can display the same figure in a Dash for R application by passing it to the figure argument of the Graph component from the built-in dashCoreComponents package like this:

library(plotly)

fig <- plot_ly() 
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... ) 

library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()
app$layout(
    htmlDiv(
        list(
            dccGraph(figure=fig) 
        )
     )
)

app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)