PCA Visualization in ggplot2
How to do PCA Visualization in ggplot2 with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
ggfortify
lets ggplot2
know how to interpret PCA objects. After loading ggfortify
, you can use ggplot2::autoplot
function for stats::prcomp
and stats::princomp
objects.
Default plot
library(plotly)
library(ggfortify)
df <- iris[1:4]
pca_res <- prcomp(df, scale. = TRUE)
p <- autoplot(pca_res)
ggplotly(p)
PCA result should only contains numeric values. If you want to colorize by non-numeric values which original data has, pass original data
using data keyword and then specify column name by colour
keyword. Use help(autoplot.prcomp)
(or help(autoplot.*)
for any other objects) to check available options.
library(plotly)
library(ggfortify)
df <- iris[1:4]
pca_res <- prcomp(df, scale. = TRUE)
p <- autoplot(pca_res, data = iris, colour = 'Species')
ggplotly(p)
Adding data labels
Passing label = TRUE
draws each data label using rownames
library(plotly)
library(ggfortify)
df <- iris[1:4]
pca_res <- prcomp(df, scale. = TRUE)
p <- autoplot(pca_res, data = iris, colour = 'Species', label = TRUE, label.size = 3)
ggplotly(p)
Passing shape = FALSE
makes plot without points. In this case, label
is turned on unless otherwise specified.
library(plotly)
library(ggfortify)
df <- iris[1:4]
pca_res <- prcomp(df, scale. = TRUE)
p <- autoplot(pca_res, data = iris, colour = 'Species', shape = FALSE, label.size = 3)
ggplotly(p)
Displaying eigenvectors.
Passing loadings = TRUE
draws eigenvectors.
library(plotly)
library(ggfortify)
df <- iris[1:4]
pca_res <- prcomp(df, scale. = TRUE)
p <- autoplot(pca_res, data = iris, colour = 'Species', loadings = TRUE)
ggplotly(p)
You can attach eigenvector labels and change some options.
library(plotly)
df <- iris[1:4]
pca_res <- prcomp(df, scale. = TRUE)
p <- autoplot(pca_res, data = iris, colour = 'Species',
loadings = TRUE, loadings.colour = 'blue',
loadings.label = TRUE, loadings.label.size = 3)
ggplotly(p)
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)