Scatter Plots in ggplot2

How to make Scatter Plots in ggplot2 with Plotly.


New to Plotly?

Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

Default point plot

library(plotly)
library(ggplot2)

p <- ggplot(mtcars, aes(wt, mpg))
p <-  p + geom_point()

ggplotly(p)
Click to copy

Add colour

library(plotly)
library(ggplot2)

p <- ggplot(mtcars, aes(wt, mpg))
p <-  p + geom_point(aes(colour = factor(cyl)))

ggplotly(p)
Click to copy

Changing shapes of data points

library(plotly)
library(ggplot2)

p <- ggplot(mtcars, aes(wt, mpg))
p <-  p + geom_point(aes(shape = factor(cyl)))

ggplotly(p)
Click to copy

Changing size of data points

library(plotly)
library(ggplot2)

p <- ggplot(mtcars, aes(wt, mpg))
p <-  p + geom_point(aes(size = qsec))

ggplotly(p)
Click to copy

Manually setting aesthetics

library(plotly)
library(ggplot2)

p <-  ggplot(mtcars, aes(wt, mpg)) + geom_point(colour = "red", size = 3)

ggplotly(p)
Click to copy

Optional shape arguments

For shapes that have a border (like shape 21), you can colour the inside and outside separately. Use the stroke aesthetic to modify the width of the border.

library(plotly)
library(ggplot2)

p <-    
 ggplot(mtcars, aes(wt, mpg)) +
  geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 5)

ggplotly(p)
Click to copy

Mix multiples shapes

You can create interesting shapes by layering multiple points of different sizes.

Default plot:

library(plotly)
library(ggplot2)

p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
p <-    
 p +
  geom_point(aes(colour = factor(cyl)), size = 4) +
  geom_point(colour = "grey90", size = 1.5)

ggplotly(p)
Click to copy

Mixed shapes:

library(plotly)
library(ggplot2)

p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
p <-    
 p +
  geom_point(colour = "black", size = 4.5) +
  geom_point(colour = "pink", size = 4) +
  geom_point(aes(shape = factor(cyl)))

ggplotly(p)
Click to copy

Liner Regression

library(plotly)
library(ggplot2)

dat <- data.frame(cond = rep(c("A", "B"), each=10),
                  xvar = 1:20 + rnorm(20,sd=3),
                  yvar = 1:20 + rnorm(20,sd=3))

p <- ggplot(dat, aes(x=xvar, y=yvar)) +
    geom_point(shape=1) +    # Use hollow circles
    geom_smooth(method=lm)   # Add linear regression line

ggplotly(p)
Click to copy
library(plotly)
library(ggplot2)

dat <- data.frame(cond = rep(c("A", "B"), each=10),
                  xvar = 1:20 + rnorm(20,sd=3),
                  yvar = 1:20 + rnorm(20,sd=3))

p <- ggplot(dat, aes(x=xvar, y=yvar)) +
    geom_point(shape=1) +
    geom_smooth()
Click to copy

Without confidence boundary area:

library(plotly)
library(ggplot2)

dat <- data.frame(cond = rep(c("A", "B"), each=10),
                  xvar = 1:20 + rnorm(20,sd=3),
                  yvar = 1:20 + rnorm(20,sd=3))

p <- ggplot(dat, aes(x=xvar, y=yvar)) +
    geom_point(shape=1) +    # Use hollow circles
    geom_smooth(method=lm,   # Add linear regression line
                se=FALSE)    # Don't add shaded confidence region

ggplotly(p)
Click to copy

Multiple regressions:

library(plotly)
library(ggplot2)

x <-  1:10
dd <- rbind(data.frame(x=x,fac="a", y=x+rnorm(10)),
            data.frame(x=2*x,fac="b", y=x+rnorm(10)))
coef <- lm(y~x:fac, data=dd)$coefficients
p <- qplot(data=dd, x=x, y=y, color=fac)+
    geom_abline(slope=coef["x:faca"], intercept=coef["(Intercept)"])+
    geom_abline(slope=coef["x:facb"], intercept=coef["(Intercept)"])

ggplotly(p)
Click to copy

Constrained slope

library(plotly)
library(ggplot2)

n <- 20

x1 <- rnorm(n); x2 <- rnorm(n)
y1 <- 2 * x1 + rnorm(n)
y2 <- 3 * x2 + (2 + rnorm(n))
A <- as.factor(rep(c(1, 2), each = n))
df <- data.frame(x = c(x1, x2), y = c(y1, y2), A = A)
fm <- lm(y ~ x + A, data = df)

p <- ggplot(data = cbind(df, pred = predict(fm)), aes(x = x, y = y, color = A))
p <- p + geom_point() + geom_line(aes(y = pred))

ggplotly(p)
Click to copy

Stat Summary

library(plotly)
library(ggplot2)

hist <- data.frame(date=Sys.Date() + 0:13, counts=1:14)
hist <- transform(hist, weekday=factor(weekdays(date), levels=c('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday')))

p <- ggplot(hist, aes(x=weekday, y=counts, group=1)) +
    geom_point(stat='summary', fun.y=sum) +
    stat_summary(fun.y=sum, geom="line")

ggplotly(p)
Click to copy
MondayTuesdayWednesdayThursdayFridaySaturdaySunday05101520
weekdaycounts

Line order

library(plotly)
library(ggplot2)

dat <- data.frame(x = sample(1:10), y = sample(1:10), order = sample(1:10))
p <- ggplot(dat[order(dat$order),], aes(x, y)) + geom_point() + geom_text(aes(y = y + 0.25,label =      order)) +
     geom_path()

ggplotly(p)
Click to copy

Adding horizontal line

library(plotly)
library(ggplot2)

p <- ggplot(mtcars,aes(mpg,qsec))+geom_point() +
  geom_segment(aes(x=15,xend=20,y=18,yend=18))

ggplotly(p)
Click to copy

Adding points to line

library(plotly)
library(ggplot2)

df <- data.frame(time=as.factor(c(1,1,2,2,3,3,4,4,5,5)), 
               value=as.numeric(c(7, 8, 9, 10, 10, 11, 10.5, 11.4, 10.9, 11.6)), 
               side=as.factor(c("E","F","E","F","E","F","E","F","E","F")))


p <- ggplot(df, aes(time, value, group=side, colour=side)) + 
     geom_line(size=1)
p <- p + geom_point()

ggplotly(p)
Click to copy

What About Dash?

Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash for R at https://dashr.plot.ly/installation.

Everywhere in this page that you see fig, you can display the same figure in a Dash for R application by passing it to the figure argument of the Graph component from the built-in dashCoreComponents package like this:

library(plotly)

fig <- plot_ly() 
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... ) 

library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)

app <- Dash$new()
app$layout(
    htmlDiv(
        list(
            dccGraph(figure=fig) 
        )
     )
)

app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)
Click to copy