Scatter Plots in ggplot2
How to make Scatter Plots in ggplot2 with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Default point plot
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg))
p <- p + geom_point()
ggplotly(p)
Add colour
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg))
p <- p + geom_point(aes(colour = factor(cyl)))
ggplotly(p)
Changing shapes of data points
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg))
p <- p + geom_point(aes(shape = factor(cyl)))
ggplotly(p)
Changing size of data points
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg))
p <- p + geom_point(aes(size = qsec))
ggplotly(p)
Manually setting aesthetics
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point(colour = "red", size = 3)
ggplotly(p)
Optional shape arguments
For shapes that have a border (like shape 21), you can colour the inside and outside separately. Use the stroke aesthetic to modify the width of the border.
library(plotly)
library(ggplot2)
p <-
ggplot(mtcars, aes(wt, mpg)) +
geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 5)
ggplotly(p)
Mix multiples shapes
You can create interesting shapes by layering multiple points of different sizes.
Default plot:
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
p <-
p +
geom_point(aes(colour = factor(cyl)), size = 4) +
geom_point(colour = "grey90", size = 1.5)
ggplotly(p)
Mixed shapes:
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
p <-
p +
geom_point(colour = "black", size = 4.5) +
geom_point(colour = "pink", size = 4) +
geom_point(aes(shape = factor(cyl)))
ggplotly(p)
Liner Regression
library(plotly)
library(ggplot2)
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
p <- ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm) # Add linear regression line
ggplotly(p)
library(plotly)
library(ggplot2)
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
p <- ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) +
geom_smooth()
Without confidence boundary area:
library(plotly)
library(ggplot2)
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
p <- ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm, # Add linear regression line
se=FALSE) # Don't add shaded confidence region
ggplotly(p)
Multiple regressions:
library(plotly)
library(ggplot2)
x <- 1:10
dd <- rbind(data.frame(x=x,fac="a", y=x+rnorm(10)),
data.frame(x=2*x,fac="b", y=x+rnorm(10)))
coef <- lm(y~x:fac, data=dd)$coefficients
p <- qplot(data=dd, x=x, y=y, color=fac)+
geom_abline(slope=coef["x:faca"], intercept=coef["(Intercept)"])+
geom_abline(slope=coef["x:facb"], intercept=coef["(Intercept)"])
ggplotly(p)
Constrained slope
library(plotly)
library(ggplot2)
n <- 20
x1 <- rnorm(n); x2 <- rnorm(n)
y1 <- 2 * x1 + rnorm(n)
y2 <- 3 * x2 + (2 + rnorm(n))
A <- as.factor(rep(c(1, 2), each = n))
df <- data.frame(x = c(x1, x2), y = c(y1, y2), A = A)
fm <- lm(y ~ x + A, data = df)
p <- ggplot(data = cbind(df, pred = predict(fm)), aes(x = x, y = y, color = A))
p <- p + geom_point() + geom_line(aes(y = pred))
ggplotly(p)
Stat Summary
library(plotly)
library(ggplot2)
hist <- data.frame(date=Sys.Date() + 0:13, counts=1:14)
hist <- transform(hist, weekday=factor(weekdays(date), levels=c('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday')))
p <- ggplot(hist, aes(x=weekday, y=counts, group=1)) +
geom_point(stat='summary', fun.y=sum) +
stat_summary(fun.y=sum, geom="line")
ggplotly(p)
Line order
library(plotly)
library(ggplot2)
dat <- data.frame(x = sample(1:10), y = sample(1:10), order = sample(1:10))
p <- ggplot(dat[order(dat$order),], aes(x, y)) + geom_point() + geom_text(aes(y = y + 0.25,label = order)) +
geom_path()
ggplotly(p)
Adding horizontal line
library(plotly)
library(ggplot2)
p <- ggplot(mtcars,aes(mpg,qsec))+geom_point() +
geom_segment(aes(x=15,xend=20,y=18,yend=18))
ggplotly(p)
Adding points to line
library(plotly)
library(ggplot2)
df <- data.frame(time=as.factor(c(1,1,2,2,3,3,4,4,5,5)),
value=as.numeric(c(7, 8, 9, 10, 10, 11, 10.5, 11.4, 10.9, 11.6)),
side=as.factor(c("E","F","E","F","E","F","E","F","E","F")))
p <- ggplot(df, aes(time, value, group=side, colour=side)) +
geom_line(size=1)
p <- p + geom_point()
ggplotly(p)
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)