geom_smooth in ggplot2
How to use the abline geom in ggplot2 online to add a line with specified slope and intercept to the plot.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Gaussian
library(plotly)
p <- qplot(speed, dist, data=cars)
p <- p + geom_smooth(method = "glm", formula = y~x, family = gaussian(link = 'log'))
fig <- ggplotly(p)
fig
Inspired by Stack Overflow
Horizontal Line & Fit
library(plotly)
the.data <- read.table( header=TRUE, sep=",",
text="source,year,value
S1,1976,56.98
S1,1977,55.26
S1,1978,68.83
S1,1979,59.70
S1,1980,57.58
S1,1981,61.54
S1,1982,48.65
S1,1983,53.45
S1,1984,45.95
S1,1985,51.95
S1,1986,51.85
S1,1987,54.55
S1,1988,51.61
S1,1989,52.24
S1,1990,49.28
S1,1991,57.33
S1,1992,51.28
S1,1993,55.07
S1,1994,50.88
S2,1993,54.90
S2,1994,51.20
S2,1995,52.10
S2,1996,51.40
S3,2002,57.95
S3,2003,47.95
S3,2004,48.15
S3,2005,37.80
S3,2006,56.96
S3,2007,48.91
S3,2008,44.00
S3,2009,45.35
S3,2010,49.40
S3,2011,51.19")
cutoff <- data.frame( x = c(-Inf, Inf), y = 50, cutoff = factor(50) )
p <- ggplot(the.data, aes( year, value ) ) +
geom_point(aes( colour = source )) +
geom_smooth(aes( group = 1 )) +
geom_hline(yintercept = 50)
fig <- ggplotly(p)
fig
Inspired by Stack Overflow
Facets
library(plyr)
library(plotly)
library(Lahman)
hr_stats_df <- ddply(Batting, .(playerID), function(df) c(mean(df$HR, na.rm = T),
max(df$HR, na.rm = T), sum(df$HR, na.rm = T), nrow(df)))
names(hr_stats_df)[c(2, 3, 4, 5)] <- c("HR.mean", "HR.max", "HR.total", "career.length")
hr_stats_long_df <- subset(hr_stats_df, career.length >= 10)
Batting_hr <- merge(Batting, hr_stats_long_df)
Batting_hr_cy <- ddply(Batting_hr, .(playerID), function(df) transform(df, career.year = yearID -
min(yearID) + 1))
start_year_df <- ddply(Batting_hr_cy, .(playerID), function(df) min(df$yearID))
names(start_year_df)[2] <- "start.year"
# Merge this with other data.
Batting_hr_cy2 <- merge(Batting_hr_cy, start_year_df)
Batting_early <- subset(Batting_hr_cy2, start.year < 1940)
Batting_late <- subset(Batting_hr_cy2, start.year > 1950)
tot_HR_early <- subset(Batting_early, select = c(playerID, HR.total))
# Remove the duplicate rows:
tot_HR_early <- unique(tot_HR_early)
tot_HR_early_srt <- arrange(tot_HR_early, desc(HR.total))
top10_HR_hitters_early <- tot_HR_early_srt[1:10, "playerID"]
tot_HR_late <- subset(Batting_late, select = c(playerID, HR.total))
# Remove the duplicate rows:
tot_HR_late <- unique(tot_HR_late)
tot_HR_late_srt <- arrange(tot_HR_late, desc(HR.total))
top10_HR_hitters_late <- tot_HR_late_srt[1:10, "playerID"]
Batting_early_top10 <- subset(Batting_early, playerID %in% top10_HR_hitters_early)
p <- ggplot(data = Batting_early_top10, aes(x = career.year, y = HR/AB)) +
geom_point() +
facet_wrap(~playerID, ncol = 3) +
geom_smooth()
fig <- ggplotly(p)
fig
Inspired by Steven Buechler.
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)