geom_ribbon in ggplot2
How to make plots with geom_ribbon in ggplot2 and R.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Line & Ribbon
library(plotly)
set.seed(1)
y <- sin(seq(1, 2*pi, length.out = 100))
x <- 1:100
plotdata <- data.frame(x=x, y=y, lower = (y+runif(100, -1, -0.5)), upper = (y+runif(100, 0.5, 1)))
p <- ggplot(plotdata) + geom_line(aes(y=y, x=x, colour = "sin"))+
geom_ribbon(aes(ymin=lower, ymax=upper, x=x, fill = "band"), alpha = 0.3)+
scale_colour_manual("",values="blue")+
scale_fill_manual("",values="grey12")
fig <- ggplotly()
fig
Inspired by ggplot2 docs
Facets
library(plotly)
set.seed(1987)
pkgs <- c("ggplot2", "mgcv", "MASS")
invisible(lapply(pkgs, require, character.only = TRUE))
load(url('https://hbiostat.org/data/repo/titanic3.sav'))
titanic3 <- na.omit(titanic3[, -c(3,8:14)])
titanic3$class_sex <- apply(titanic3, 1,
function(x) paste(x[1], x[3], collapse = "_"))
titanic3$class_sex <- factor(titanic3$class_sex)
train <- titanic3[sample(row.names(titanic3),
size = round(nrow(titanic3) / 2)), ]
test <- titanic3[!(row.names(titanic3) %in% row.names(train)), ]
sim.data <- expand.grid(sex = c("male", "female"), sibsp = 0,
age = seq(1, 80), pclass = c("1st", "2nd", "3rd"))
glm.fit <- glm(survived ~ poly(age, 2) * sex * pclass + sibsp,
"binomial", train)
inv.logit <- function(x) exp(x) / (1 + exp(x))
glm.pred <- predict(glm.fit, newdata = test, se.fit = TRUE)
pred <- data.frame(mean = inv.logit(glm.pred$fit),
lo = inv.logit(glm.pred$fit - 2 * glm.pred$se.fit),
hi = inv.logit(glm.pred$fit + 2 * glm.pred$se.fit),
survived = test$survived)
pred <- pred[order(pred$mean), ]
pred$id <- seq_along(pred$mean)
row.names(pred) <- NULL
pred <- predict(glm.fit, newdata = sim.data, se.fit = TRUE)
sim.data$mean <- inv.logit(pred$fit)
sim.data$lo <- inv.logit(pred$fit - 2 * pred$se.fit)
sim.data$hi <- inv.logit(pred$fit + 2 * pred$se.fit)
p <- ggplot(titanic3, aes(x = age, y = survived))
p <- p + geom_point()
p <- p + facet_grid(sex ~ pclass)
p <- p + geom_line(data = sim.data, aes(y = mean))
p <- p + geom_ribbon(data = sim.data, aes(y = mean, ymin = lo, ymax = hi),
alpha = .25)
p <- p + labs(x = "Passenger Age", y = "Probability of Survival")
fig <- ggplotly(p)
fig
Inspired by Zachary Jones
Facetwrap & Smooth
library(plotly)
set.seed(42)
n <- 100
df <- data.frame(location = rep(LETTERS[1:4], n),
score = sample(45:80, 4*n, replace = TRUE))
df$fig <- inv.logit(0.075 * df$score + rep(c(-4.5, -5, -6, -2.8), n))
df$pass <- sapply(df$fig, function(x){rbinom(1, 1, x)})
g <- glm(pass ~ location + score, data = df, family = 'binomial')
new.data <- expand.grid(score = seq(46, 75, length = n),
location = LETTERS[1:4])
preds <- predict(g, newdata = new.data, type = 'response',se = TRUE)
new.data$pred.full <- preds$fit
new.data$ymin <- new.data$pred.full - 2*preds$se.fit
new.data$ymax <- new.data$pred.full + 2*preds$se.fit
p <- ggplot(df,aes(x = score, y = pass)) +
facet_wrap(~location) +
geom_point(size=1) +
geom_ribbon(data = new.data,aes(y = pred.full, ymin = ymin, ymax = ymax),alpha = 0.25) +
geom_line(data = new.data,aes(y = pred.full),colour = "blue")
fig <- ggplotly(p)
fig
Inspired by Stack Overflow
Prediction Bands
library(plotly)
set.seed(42)
x <- rep(0:100,10)
y <- 15 + 2*rnorm(1010,10,4)*x + rnorm(1010,20,100)
id<-rep(1:10,each=101)
dtfr <- data.frame(x=x ,y=y, id=id)
library(nlme)
model.mx <- lme(y~x,random=~1+x|id,data=dtfr)
#create data.frame with new values for predictors
#more than one predictor is possible
new.dat <- data.frame(x=0:100)
#predict response
new.dat$pred <- predict(model.mx, newdata=new.dat,level=0)
#create design matrix
Designmat <- model.matrix(eval(eval(model.mx$call$fixed)[-2]), new.dat[-ncol(new.dat)])
#compute standard error for predictions
predvar <- diag(Designmat %*% model.mx$varFix %*% t(Designmat))
new.dat$SE <- sqrt(predvar)
new.dat$SE2 <- sqrt(predvar+model.mx$sigma^2)
library(ggplot2)
p <- ggplot(new.dat,aes(x=x,y=pred)) +
geom_line() +
geom_ribbon(aes(ymin=pred-2*SE2,ymax=pred+2*SE2),alpha=0.2,fill="red") +
geom_ribbon(aes(ymin=pred-2*SE,ymax=pred+2*SE),alpha=0.2,fill="blue") +
geom_point(data=dtfr,aes(x=x,y=y), size=1) +
scale_y_continuous("y")
fig <- ggplotly(p)
fig
Inspired by Stack Overflow
Confidence Bands
library(plotly)
require(nlme)
set.seed(101)
mp <- data.frame(year=1990:2010)
N <- nrow(mp)
mp <- within(mp,
{
wav <- rnorm(N)*cos(2*pi*year)+rnorm(N)*sin(2*pi*year)+5
wow <- rnorm(N)*wav+rnorm(N)*wav^3
})
m01 <- gls(wow~poly(wav,3), data=mp, correlation = corARMA(p=1))
fit <- predict(m01)
V <- vcov(m01)
X <- model.matrix(~poly(wav,3),data=mp)
se.fit <- sqrt(diag(X %*% V %*% t(X)))
predframe <- with(mp,data.frame(year,wav,
wow=fit,lwr=fit-1.96*se.fit,upr=fit+1.96*se.fit))
p <- ggplot(mp, aes(year, wow))+
geom_point()+
geom_line(data=predframe)+
geom_ribbon(data=predframe,aes(ymin=lwr,ymax=upr),alpha=0.3)
fig <- ggplotly(p)
fig
Inspired by Stack overflow
Multiple Layers
library(plotly)
x=seq(1,10,length=100)
data=data.frame(x,dnorm(x,mean=6.5,sd=1))
names(data)=c('x','new.data')
x.ribbon=seq(1,10,length=20)
ribbon=data.frame(x.ribbon,
dnorm(x.ribbon,mean=5,sd=1)+.01,
dnorm(x.ribbon,mean=5,sd=1)-.01,
dnorm(x.ribbon,mean=5,sd=1))
names(ribbon)=c('x.ribbon','max','min','avg')
p <- ggplot()+geom_ribbon(data=ribbon,aes(ymin=min,ymax=max,x=x.ribbon,fill='lightgreen'))+
geom_line(data=ribbon,aes(x=x.ribbon,y=avg,color='black'))+
geom_line(data=data,aes(x=x,y=new.data,color='red'))+
xlab('x')+ylab('density') +
scale_fill_identity() +
scale_colour_manual(name = 'the colour',
values =c('black'='black','red'='red'))
fig <- ggplotly(p)
fig
Inspired by Stack Overflow
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)