geom_point in ggplot2
How to make a scatter chart in ggplot2. Examples of scatter charts and line charts with fits and regressions.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Scatter Chart
library(plotly)
set.seed(955)
# Make some noisily increasing data
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
p <- ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) # Use hollow circles
fig <- ggplotly(p)
fig
Liner Regression w/ smooth
library(plotly)
set.seed(955)
# Make some noisily increasing data
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
p <- ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm) # Add linear regression line
fig <- ggplotly(p)
fig
Without Shading
library(plotly)
set.seed(955)
# Make some noisily increasing data
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
p <- ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm, # Add linear regression line
se=FALSE) # Don't add shaded confidence region
fig <- ggplotly(p)
fig
Loess Smoothed Fit
library(plotly)
set.seed(955)
# Make some noisily increasing data
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
p <- ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth() # Add a loess smoothed fit curve with confidence region
# > geom_smooth: method="auto" and size of largest group is less than 1000, so using loess.
# Use 'method = x' to change the smoothing method.
fig <- ggplotly(p)
fig
Constrained Slope
library(plotly)
set.seed(1234)
n <- 20
x1 <- rnorm(n); x2 <- rnorm(n)
y1 <- 2 * x1 + rnorm(n)
y2 <- 3 * x2 + (2 + rnorm(n))
A <- as.factor(rep(c(1, 2), each = n))
df <- data.frame(x = c(x1, x2), y = c(y1, y2), A = A)
fm <- lm(y ~ x + A, data = df)
p <- ggplot(data = cbind(df, pred = predict(fm)), aes(x = x, y = y, color = A))
p <- p + geom_point() + geom_line(aes(y = pred))
fig <- ggplotly(p)
fig
Inspire by Stack Overflow
Stat Summary
library(plotly)
hist <- data.frame(date=Sys.Date() + 0:13, counts=1:14)
hist <- transform(hist, weekday=factor(weekdays(date), levels=c('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday')))
p <- ggplot(hist, aes(x=weekday, y=counts, group=1)) +
geom_point(stat='summary', fun.y=sum) +
stat_summary(fun.y=sum, geom="line")
fig <- ggplotly(p)
fig
Inspire by Stack Overflow
Control Line Order
library(plotly)
dat <- data.frame(x = sample(1:10), y = sample(1:10), order = sample(1:10))
p <- ggplot(dat[order(dat$order),], aes(x, y)) + geom_point() + geom_text(aes(y = y + 0.25,label = order)) +
geom_path()
fig <- ggplotly(p)
fig
Horizontal Line w/ Segment
library(plotly)
p <- ggplot(mtcars,aes(mpg,qsec))+geom_point() +
geom_segment(aes(x=15,xend=20,y=18,yend=18))
fig <- ggplotly(p)
fig
Inspired by Stack Overflow
Add Points
library(plotly)
df <- data.frame(time=as.factor(c(1,1,2,2,3,3,4,4,5,5)),
value=as.numeric(c(7, 8, 9, 10, 10, 11, 10.5, 11.4, 10.9, 11.6)),
side=as.factor(c("E","F","E","F","E","F","E","F","E","F")))
p <- ggplot(df, aes(time, value, group=side, colour=side)) +
geom_line(size=1)
p <- p + geom_point()
fig <- ggplotly(p)
fig
Add Regression w/ Abline
library(plotly)
set.seed(1)
x <- 1:10
dd <- rbind(data.frame(x=x,fac="a", y=x+rnorm(10)),
data.frame(x=2*x,fac="b", y=x+rnorm(10)))
coef <- lm(y~x:fac, data=dd)$coefficients
p <- qplot(data=dd, x=x, y=y, color=fac)+
geom_abline(slope=coef["x:faca"], intercept=coef["(Intercept)"])+
geom_abline(slope=coef["x:facb"], intercept=coef["(Intercept)"])
fig <- ggplotly(p)
fig
Inspired by Stats Exchange
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)