geom_density in ggplot2
Add a smooth density estimate calculated by stat_density with ggplot2 and R. Examples, tutorials, and code.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Basic Density Plot
library(plotly)
library(ggplot2)
set.seed(1234)
dfGamma = data.frame(nu75 = rgamma(100, 0.75),
nu1 = rgamma(100, 1),
nu2 = rgamma(100, 2))
dfGamma = stack(dfGamma)
p <- ggplot(dfGamma, aes(x = values)) +
stat_density(aes(group = ind, color = ind),position="identity",geom="line")
fig <- ggplotly(p)
fig
Density & Facet
library(plotly)
require(plyr)
dd<-data.frame(matrix(rnorm(144, mean=2, sd=2),72,2),c(rep("A",24),rep("B",24),rep("C",24)))
colnames(dd) <- c("x_value", "Predicted_value", "State_CD")
dd <- data.frame(
predicted = rnorm(72, mean = 2, sd = 2),
state = rep(c("A", "B", "C"), each = 24)
)
grid <- with(dd, seq(min(predicted), max(predicted), length = 100))
normaldens <- ddply(dd, "state", function(df) {
data.frame(
predicted = grid,
density = dnorm(grid, mean(df$predicted), sd(df$predicted))
)
})
p <- ggplot(dd, aes(predicted)) +
geom_density() +
geom_line(aes(y = density), data = normaldens, colour = "red") +
facet_wrap(~ state)
fig <- ggplotly(p)
fig
Multiple Density Plot
library(plotly)
carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))
#Now, combine your two dataframes into one. First make a new column in each.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'
#and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)
#now make your lovely plot
p <- ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)
fig <- ggplotly(p)
fig
Stacked Density Plot
library(plotly)
set.seed(123)
df <- data.frame(x <- rchisq(1000, 5, 10),
group <- sample(LETTERS[1:5], size = 1000, replace = T))
p <- ggplot(df, aes(x, fill = group)) +
geom_density(alpha = 0.5, position = "stack") +
ggtitle("stacked density chart")
fig <- ggplotly(p)
fig
Overlay Histogram
library(plotly)
set.seed(123)
df <- data.frame(x <- rchisq(1000, 5, 10),
group <- sample(LETTERS[1:5], size = 1000, replace = T))
p <- ggplot(df, aes(x)) +
geom_histogram(aes(y = ..density..), alpha = 0.7, fill = "#333333") +
geom_density(fill = "#ff4d4d", alpha = 0.5) +
theme(panel.background = element_rect(fill = '#ffffff')) +
ggtitle("Density with Histogram overlay")
fig <- ggplotly(p)
fig
Overlay Scatterplot
library(plotly)
set.seed(123)
df <- data.frame(x <- rchisq(1000, 10, 10),
y <- rnorm(1000))
p <- ggplot(df, aes(x, y)) +
geom_point(alpha = 0.5) +
geom_density_2d() +
theme(panel.background = element_rect(fill = '#ffffff')) +
ggtitle("2D density plot with scatterplot overlay")
fig <- ggplotly(p)
fig
Kernel Density Estimate
library(plotly)
p <- ggplot(diamonds, aes(x = price)) +
geom_density(aes(fill = "epanechnikov"), kernel = "epanechnikov") +
facet_grid(~cut) +
ggtitle("Kernel density estimate with Facets")
fig <- ggplotly(p)
fig
Kernel Density Plot
library(plotly)
p <- ggplot(diamonds, aes(x = price)) +
geom_density(aes(fill = color), alpha = 0.5) +
ggtitle("Kernel Density estimates by group")
fig <- ggplotly(p)
fig
These plots were inspired by ggplot2 documentation.
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)