geom_abline in ggplot2
How to use the abline geom in ggplot2 to add a line with specified slope and intercept to the plot.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Line
add line for mean using geom_vline
library(plotly)
set.seed(1234)
dat <- data.frame(cond = factor(rep(c("A","B"), each=200)),
rating = c(rnorm(200),rnorm(200, mean=.8)))
p <- ggplot(dat, aes(x=rating)) +
geom_histogram(binwidth=.5, colour="black", fill="white") +
geom_vline(aes(xintercept=mean(rating, na.rm=T)), # Ignore NA values for mean
color="red", linetype="dashed", size=1)
fig <- ggplotly(p)
fig
Histogram
overlaid histograms with geom_vline
library(plotly)
library(plyr)
cdat <- ddply(dat, "cond", summarise, rating.mean=mean(rating))
# Overlaid histograms with means
p <- ggplot(dat, aes(x=rating, fill=cond)) +
geom_histogram(binwidth=.5, alpha=.5, position="identity") +
geom_vline(data=cdat, aes(xintercept=rating.mean),
linetype="dashed", size=1)
fig <- ggplotly(p)
fig
Histogram Means
histograms with geom_vline
means
library(plotly)
library(plyr)
cdat <- ddply(dat, "cond", summarise, rating.mean=mean(rating))
# With mean lines
p <- ggplot(dat, aes(x=rating)) + geom_histogram(binwidth=.5, colour="black", fill="white") +
facet_grid(cond ~ .) +
geom_vline(data=cdat, aes(xintercept=rating.mean),
linetype="dashed", size=1, colour="red")
fig <- ggplotly(p)
fig
Density Plots
density plots with geom_vline
means
library(plotly)
library(plyr)
cdat <- ddply(dat, "cond", summarise, rating.mean=mean(rating))
# Density plots with means
p <- ggplot(dat, aes(x=rating, colour=cond)) +
geom_density() +
geom_vline(data=cdat, aes(xintercept=rating.mean),
linetype="dashed", size=1)
fig <- ggplotly(p)
fig
Horizontal Line
add horizontal line with geom_hline
library(plotly)
dat <- read.table(header=TRUE, text='
cond xval yval
control 11.5 10.8
control 9.3 12.9
control 8.0 9.9
control 11.5 10.1
control 8.6 8.3
control 9.9 9.5
control 8.8 8.7
control 11.7 10.1
control 9.7 9.3
control 9.8 12.0
treatment 10.4 10.6
treatment 12.1 8.6
treatment 11.2 11.0
treatment 10.0 8.8
treatment 12.9 9.5
treatment 9.1 10.0
treatment 13.4 9.6
treatment 11.6 9.8
treatment 11.5 9.8
treatment 12.0 10.6
')
# The basic scatterplot
p <- ggplot(dat, aes(x=xval, y=yval, colour=cond)) +
geom_point()
# Add a horizontal line
p <- p + geom_hline(aes(yintercept=10))
fig <- ggplotly(p)
fig
Mean Line
add mean line with geom_hline
library(plotly)
dat <- read.table(header=TRUE, text='
cond xval yval
control 11.5 10.8
control 9.3 12.9
control 8.0 9.9
control 11.5 10.1
control 8.6 8.3
control 9.9 9.5
control 8.8 8.7
control 11.7 10.1
control 9.7 9.3
control 9.8 12.0
treatment 10.4 10.6
treatment 12.1 8.6
treatment 11.2 11.0
treatment 10.0 8.8
treatment 12.9 9.5
treatment 9.1 10.0
treatment 13.4 9.6
treatment 11.6 9.8
treatment 11.5 9.8
treatment 12.0 10.6
')
# The basic scatterplot
p <- ggplot(dat, aes(x=xval, y=yval, colour=cond)) +
geom_point()
mean1 <- mean(dat[dat$cond == "control", "xval"])
mean2 <- mean(dat[dat$cond == "treatment", "xval"])
# Add colored lines for the mean xval of each group
p <- p +
geom_vline(aes(xintercept=mean1), colour="green") +
geom_vline(aes(xintercept=mean2), colour="lightblue")
fig <- ggplotly(p)
fig
Geomvline & Geomhline
use geomvline
with geomhline
library(plotly)
dat <- read.table(header=TRUE, text='
cond xval yval
control 11.5 10.8
control 9.3 12.9
control 8.0 9.9
control 11.5 10.1
control 8.6 8.3
control 9.9 9.5
control 8.8 8.7
control 11.7 10.1
control 9.7 9.3
control 9.8 12.0
treatment 10.4 10.6
treatment 12.1 8.6
treatment 11.2 11.0
treatment 10.0 8.8
treatment 12.9 9.5
treatment 9.1 10.0
treatment 13.4 9.6
treatment 11.6 9.8
treatment 11.5 9.8
treatment 12.0 10.6
')
# The basic scatterplot
p <- ggplot(dat, aes(x=xval, y=yval, colour=cond)) + geom_point()
# Add a red dashed vertical line
p <- p + geom_hline(aes(yintercept=10)) +
geom_vline(aes(xintercept=11.5), colour="#BB0000", linetype="dashed")
fig <- ggplotly(p)
fig
These ggplot2 examples were inspired by the Cookbook for R.
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)