facet_grid in ggplot2
How to make subplots with facet_wrap and facet_grid in ggplot2 and R.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Basic
library(reshape2)
library(plotly)
p <- ggplot(tips, aes(x=total_bill, y=tip/total_bill)) + geom_point(shape=1)
# Divide by levels of "sex", in the vertical direction
p <- p + facet_grid(sex ~ .)
fig <- ggplotly(p)
fig
Horizontal Grid
library(reshape2)
library(plotly)
p <- ggplot(tips, aes(x=total_bill, y=tip/total_bill)) + geom_point(shape=1)
# Divide by levels of "sex", in the horizontal direction
p <- p + facet_grid(. ~ sex)
fig <- ggplotly(p)
fig
Free Scale
library(reshape2)
library(plotly)
p <- ggplot(tips, aes(x=total_bill)) + geom_histogram(binwidth=2,colour="white")
# Histogram of total_bill, divided by sex and smoker
p <- p + facet_grid(sex ~ smoker)
fig <- ggplotly(p)
fig
Free Y Axis
library(reshape2)
library(plotly)
p <- ggplot(tips, aes(x=total_bill)) + geom_histogram(binwidth=2,colour="white")
# Same as above, with scales="free_y"
p <- p + facet_grid(sex ~ smoker, scales="free_y")
fig <- ggplotly(p)
fig
Varied Range
library(reshape2)
library(plotly)
p <- ggplot(tips, aes(x=total_bill)) + geom_histogram(binwidth=2,colour="white")
# With panels that have the same scaling, but different range (and therefore different physical sizes)
p <- p + facet_grid(sex ~ smoker, scales="free", space="free")
fig <- ggplotly(p)
fig
Time Series Data
library(plotly)
require(scales)
require(gridExtra)
mymelt <- structure(list(mydate = structure(c(15340, 15340, 15340, 15340, 15340, 15340, 15340, 15340, 15340, 15340, 15340, 15340, 15371, 15371, 15371, 15371, 15371, 15371, 15371, 15371, 15371, 15371, 15371, 15371, 15400, 15400, 15400, 15400, 15400, 15400, 15400, 15400, 15400, 15400, 15400, 15400, 15431, 15431, 15431, 15431, 15431, 15431, 15431, 15431, 15431, 15431, 15431, 15431, 15461, 15461, 15461, 15461, 15461, 15461, 15461, 15461, 15461, 15461, 15461, 15461, 15492, 15492, 15492, 15492, 15492, 15492, 15492, 15492, 15492, 15492, 15492, 15492, 15522, 15522, 15522, 15522, 15522, 15522, 15522, 15522, 15522, 15522, 15522, 15522, 15553, 15553, 15553, 15553, 15553, 15553, 15553, 15553, 15553, 15553, 15553, 15553), class = "Date"), variable = c("b", "bc", "f", "in", "it", "l", "of", "o", "pr", "s", "total", "tr", "b", "bc", "f", "in", "it", "l", "of", "o", "pr", "s", "total", "tr", "b", "bc", "f", "in", "it", "l", "of", "o", "pr", "s", "total", "tr", "b", "bc", "f", "in", "it", "l", "of", "o", "pr", "s", "total", "tr", "b", "bc", "f", "in", "it", "l", "of", "o", "pr", "s", "total", "tr", "b", "bc", "f", "in", "it", "l", "of", "o", "pr", "s", "total", "tr", "b", "bc", "f", "in", "it", "l", "of", "o", "pr", "s", "total", "tr", "b", "bc", "f", "in", "it", "l", "of", "o", "pr", "s", "total", "tr"), value = c(-23, 6.90000000000001, 459.799999999999, -403.6, -56.1, -95, -13.8, 32.6, 121.5, -15.7, 26.2000000000007, 12.5, -25.1, 238.3, 1047.2, -803.2, -151.5, -260.5, -59.6, -93.8, 461.5, -37.7, 26.7999999999993, -288.8, -46.4, 249, 1289.8, -783.2, -188.1, -414.9, -77.7, -61, 928.4, -36.8, 17.4000000000015, -841.7, -46.5, 276.2, 1384.8, -541.1, -71.8999999999999, -433.3, -61.3, -28.3, 494.699999999999, -23.4, -14.5999999999985, -964.5, -46.1, 376.2, 1020.1, -119.4, 56.8000000000001, -447.7, -9.50000000000001, 14.2, -9.20000000000164, 2.5, -42.7999999999993, -880.6, -52.9, 345.5, 892.599999999999, -241.8, 144.3, -428.2, -3.30000000000001, 91.9, -294.800000000002, -5.19999999999999, -42.1999999999971, -490.1, -64.5, 379.7, 679.299999999999, -143.1, 185.9, -419.8, -4.30000000000001, 182.4, -421.900000000002, 1.80000000000001, -59.8999999999978, -435.2, -80.2, 422.2, 645.499999999998, -391.4, 76.6000000000001, -387.4, -1.70000000000001, 211.2, -131.500000000002, -10.6, -40.8999999999978, -393.6), fill = c("#A4D3EE80", "#A478AB80", "#01AEF080", "#8DC73F80", "#F8931D80", "#FFAAAA80", "#8C8C8C", "#D38D5F80", "#23238E80", "#77B9B780", "#C8373780", "#EEDD8280", "#A4D3EE80", "#A478AB80", "#01AEF080", "#8DC73F80", "#F8931D80", "#FFAAAA80", "#8C8C8C", "#D38D5F80", "#23238E80", "#77B9B780", "#C8373780", "#EEDD8280", "#A4D3EE80", "#A478AB80", "#01AEF080", "#8DC73F80", "#F8931D80", "#FFAAAA80", "#8C8C8C", "#D38D5F80", "#23238E80", "#77B9B780", "#C8373780", "#EEDD8280", "#A4D3EE80", "#A478AB80", "#01AEF080", "#8DC73F80", "#F8931D80", "#FFAAAA80", "#8C8C8C", "#D38D5F80", "#23238E80", "#77B9B780", "#C8373780", "#EEDD8280", "#A4D3EE80", "#A478AB80", "#01AEF080", "#8DC73F80", "#F8931D80", "#FFAAAA80", "#8C8C8C", "#D38D5F80", "#23238E80", "#77B9B780", "#C8373780", "#EEDD8280", "#A4D3EE80", "#A478AB80", "#01AEF080", "#8DC73F80", "#F8931D80", "#FFAAAA80", "#8C8C8C", "#D38D5F80", "#23238E80", "#77B9B780", "#C8373780", "#EEDD8280", "#A4D3EE80", "#A478AB80", "#01AEF080", "#8DC73F80", "#F8931D80", "#FFAAAA80", "#8C8C8C", "#D38D5F80", "#23238E80", "#77B9B780", "#C8373780", "#EEDD8280", "#A4D3EE80", "#A478AB80", "#01AEF080", "#8DC73F80", "#F8931D80", "#FFAAAA80", "#8C8C8C", "#D38D5F80", "#23238E80", "#77B9B780", "#C8373780", "#EEDD8280")), .Names = c("mydate", "variable", "value", "fill"), row.names = c(NA, 96L), class = "data.frame")
myvals <- mymelt[mymelt$mydate == mymelt$mydate[nrow(mymelt)],] ## last date in mymelt should always be same as plotenddate as we subset earlier
mymelt <- within(mymelt, variable <- factor(variable, as.character(myvals[order(myvals$value, decreasing = T),]$variable), ordered = TRUE))
p <- ggplot(mymelt, aes(x = mydate, y = value)) +
geom_line(lwd=0.3) +
facet_grid(. ~ variable) +
theme(axis.text.x = element_text(size = 5, angle = 90),
axis.text.y = element_text(size = 8),
axis.title.x = element_text(vjust = 0),
axis.ticks = element_blank(),
panel.grid.minor = element_blank())
fig <- ggplotly(p)
fig
Geom Line
library(plotly)
library(plyr)
date <- rep(as.Date(1:365,origin='2011-1-1'),7)
location <- factor(rep(1:7,365))
product <- rep(letters[1:7], each=365)
value <- c(sample(1:10, size=365, replace=T),sample(1:3, size=365, replace=T),
sample(10:100, size=365, replace=T), sample(1:50, size=365, replace=T),
sample(1:20, size=365, replace=T),sample(50:100, size=365, replace=T),
sample(1:100, size=365, replace=T))
dat<-data.frame(date,location,product,value)
p <- ggplot(dat, aes(x=date, y=value, color=location, group=location)) +
geom_line()+
facet_grid(product ~ ., scale = "free_y")
fig <- ggplotly(p)
fig
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)