Box Plots in ggplot2
How to make Box Plots in ggplot2 with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Basic Boxplot
library(plotly)
set.seed(1234)
dat <- data.frame(cond = factor(rep(c("A","B"), each=200)), rating = c(rnorm(200),rnorm(200, mean=.8)))
p <- ggplot(dat, aes(x=cond, y=rating)) + geom_boxplot()
ggplotly(p)
Colored Boxplot
library(plotly)
set.seed(1234)
dat <- data.frame(cond = factor(rep(c("A","B"), each=200)), rating = c(rnorm(200),rnorm(200, mean=.8)))
p <- ggplot(dat, aes(x=cond, y=rating, fill=cond)) + geom_boxplot()
ggplotly(p)
Flipped Boxplot
library(plotly)
set.seed(1234)
dat <- data.frame(cond = factor(rep(c("A","B"), each=200)), rating = c(rnorm(200),rnorm(200, mean=.8)))
p <- ggplot(dat, aes(x=cond, y=rating, fill=cond)) + geom_boxplot() +
guides(fill=FALSE) + coord_flip()
ggplotly(p)
Boxplot w/ Stats
library(plotly)
set.seed(1234)
dat <- data.frame(cond = factor(rep(c("A","B"), each=200)), rating = c(rnorm(200),rnorm(200, mean=.8)))
p <- ggplot(dat, aes(x=cond, y=rating)) + geom_boxplot() +
stat_summary(fun=mean, geom="point", shape=5, size=4)
ggplotly(p)
Boxplot Facets
library(plyr)
library(reshape2)
library(plotly)
set.seed(1234)
x<- rnorm(100)
y.1<-rnorm(100)
y.2<-rnorm(100)
y.3<-rnorm(100)
y.4<-rnorm(100)
df<- (as.data.frame(cbind(x,y.1,y.2,y.3,y.4)))
dfmelt<-melt(df, measure.vars = 2:5)
p <- ggplot(dfmelt, aes(x=factor(round_any(x,0.5)), y=value,fill=variable))+
geom_boxplot()+
facet_grid(.~variable)+
labs(x="X (binned)")+
theme(axis.text.x=element_text(angle=-90, vjust=0.4,hjust=1))
ggplotly(p)
Time Series Facets
library(foreign)
library(MASS)
library(Hmisc)
library(reshape2)
library(plotly)
dat <- read.dta("https://stats.idre.ucla.edu/stat/data/ologit.dta")
invisible(lapply(dat[, c("apply", "pared", "public")], table))
invisible(ftable(xtabs(~ public + apply + pared, data = dat)))
p <- ggplot(dat, aes(x = apply, y = gpa)) +
geom_boxplot(size = .75) +
facet_grid(pared ~ public, margins = TRUE)
ggplotly(p)
Outliers
library(plotly)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
p <- ggplot(df, aes(cut, price, fill = cut)) +
geom_boxplot(outlier.shape = NA) +
ggtitle("Ignore outliers in ggplot2")
# Need to modify the plotly object and make outlier points have opacity equal to 0
fig <- plotly_build(p)
fig$data <- lapply(fig$data, FUN = function(x){
x$marker = list(opacity = 0)
return(x)
})
fig
Linewidth
library(plotly)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
p <- ggplot(df, aes(cut, price, fill = cut)) +
geom_boxplot(size = 1) +
ggtitle("Adjust line width of boxplot in ggplot2")
# Need to modify the plotly object to make sure line width is larger than default
fig <- plotly_build(p)
fig$data <- lapply(fig$data, FUN = function(x){
x$line = list(width = 10)
return(x)
})
fig
Whiskers
library(plotly)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
# This is how it needs to be done in ggplot
p <- ggplot(df, aes(color, price)) +
stat_boxplot(geom ='errorbar') +
geom_boxplot()+
ggtitle("Add horizontal lines to whiskers using ggplot2")
# Note that plotly will automatically add horozontal lines to the whiskers
p <- ggplot(df, aes(cut, price, fill = cut)) +
geom_boxplot()+
ggtitle("Add horizontal lines to whiskers using ggplot2")
ggplotly(p)
These example were inspired by Cookbook for R.
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)