Strip Charts in ggplot2
How to make Strip Charts in ggplot2 with Plotly.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
Basic stripchart
library(plotly)
library(ggplot2)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) +
geom_jitter(position=position_jitter(0.2))
p <- p + coord_flip()
ggplotly(p)
Change point size
library(plotly)
library(ggplot2)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) +
geom_jitter(position=position_jitter(0.2), cex=1.2)
ggplotly(p)
Change shape
library(plotly)
library(ggplot2)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) +
geom_jitter(position=position_jitter(0.2), shape=17)
ggplotly(p)
Add summary statistics
library(plotly)
library(ggplot2)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) +
geom_jitter(position=position_jitter(0.2), cex=1.2)
p <- p + stat_summary(fun.y=mean, geom="point", shape=18,
size=3, color="red")
ggplotly(p)
To add standard deviation use mean_sdl
function which computes the mean plus or minus a constant times the standard deviation.
library(plotly)
library(ggplot2)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) +
geom_jitter(position=position_jitter(0.2))
p <- p + stat_summary(fun.data=mean_sdl, mult=1,
geom="pointrange", color="red")
ggplotly(p)
You can change the representation of the statistics by changing geom
, for example setting it to crossbar
.
Add box plot
To add a box plot you can use geom_boxplot()
. Likewise, you can add a notched boxplot with geom_boxplot(notch = TRUE)
and a violin plot with geom_violin(trim = FALSE)
.
library(plotly)
library(ggplot2)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) +
geom_boxplot()+
geom_jitter(position=position_jitter(0.2))
ggplotly(p)
Colour data by groups
library(plotly)
library(ggplot2)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len, color=dose)) +
geom_jitter(position=position_jitter(0.2))
ggplotly(p)
library(plotly)
library(ggplot2)
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
p <- ggplot(ToothGrowth, aes(x=dose, y=len, color=dose, shape=dose)) +
geom_jitter(position=position_jitter(0.2))+
labs(title="Plot of length by dose",x="Dose (mg)", y = "Length")
p <- p + theme_classic()
ggplotly(p)
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)