Bar Plots in ggplot2
How to make Bar Plots plots ggplot2 with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
geom_bar
is designed to make it easy to create bar charts that show counts (or sums of weights).
Default bar plot
library(plotly)
g <- ggplot(mpg, aes(class))
p <- g + geom_bar()
ggplotly(p)
library(plotly)
g <- ggplot(mpg, aes(class))
p <- g + geom_bar(aes(weight = displ))
ggplotly(p)
Add colour
library(plotly)
dat <- data.frame(
time = factor(c("Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(14.89, 17.23)
)
p <- ggplot(data=dat, aes(x=time, y=total_bill, fill=time)) +
geom_bar(stat="identity")
fig <- ggplotly(p)
fig
Setting custom colours:
library(plotly)
dat1 <- data.frame(
sex = factor(c("Female","Female","Male","Male")),
time = factor(c("Lunch","Dinner","Lunch","Dinner"), levels=c("Lunch","Dinner")),
total_bill = c(13.53, 16.81, 16.24, 17.42)
)
p <- ggplot(data=dat1, aes(x=time, y=total_bill, fill=sex)) +
geom_bar(stat="identity", position=position_dodge(), colour="black") +
scale_fill_manual(values=c("#999999", "#E69F00"))
fig <- ggplotly(p)
fig
Stacking bar plots
Bar plots are automatically stacked when multiple bars are at the same location. The order of the fill is designed to match the legend.
library(plotly)
g <- ggplot(mpg, aes(class))
p <- g + geom_bar(aes(fill = drv))
ggplotly(p)
Showing mean
library(plotly)
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
p <-
ggplot(df, aes(trt, outcome)) +
geom_col()
ggplotly(p)
geom_point()
displays exactly the same information and doesn't require the y-axis to touch zero.
library(plotly)
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
p <-
ggplot(df, aes(trt, outcome)) +
geom_point()
ggplotly(p)
You can also use geom_bar()
with continuous data, in which case it will show counts at unique locations.
library(plotly)
df <- data.frame(x = rep(c(2.9, 3.1, 4.5), c(5, 10, 4)))
p <- ggplot(df, aes(x)) + geom_bar()
ggplotly(p)
Using binwidth
library(plotly)
df <- data.frame(x = rep(c(2.9, 3.1, 4.5), c(5, 10, 4)))
p <- ggplot(df, aes(x)) + geom_histogram(binwidth = 0.5)
ggplotly(p)
Error Bars
barplot with error bars
library(plotly)
library(dplyr)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
df.summ <- df %>% group_by(cut) %>% summarize(Mean = mean(table), Min = min(table), Max = max(table))
p <- ggplot(df.summ, aes(x = cut, y = Mean, ymin = Min, ymax = Max, fill = cut)) +
geom_bar(stat = "identity") +
geom_errorbar() +
ggtitle("Bar chart with Error Bars")
ggplotly(p)
Ordered Bar Chart
ordering variable in geom_bar
library(plotly)
library(plyr)
dane<-data.frame(x=1:10,y=seq(-5,4),g=rep(c('A','B'),each=5))
dane$x<-as.factor(dane$x)
p <- ggplot(data=dane,aes(x=x,y=y,fill=g)) +
geom_bar(stat="identity")
ggplotly(p)
Precentages
using geom_bar
to show percentages
library(plotly)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
p <- ggplot(df, aes(x = color)) +
geom_bar(aes(y = ..count../sum(..count..), fill = cut)) +
scale_fill_brewer(palette = "Set3") +
ylab("Percent") +
ggtitle("Show precentages in bar chart")
ggplotly(p)
Set manual colors using geom_bar
to manually specify colors.
library(plotly)
library(RColorBrewer)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
# Simply use fill = a vector of colors
p <- ggplot(df, aes(x = color)) +
geom_bar(fill = brewer.pal(length(unique(df$color)), "Set3")) +
ylab("Count") +
ggtitle("Specify manual colors in a bar chart")
ggplotly(p)
Reordered Bar Chart
Re-ordering bars shown using geom_bar
.
library(plotly)
df <- data.frame(x = as.factor(LETTERS[1:5]),
y = sample(10:20, size = 5))
# First change factor levels
df$x <- factor(df$x, levels = c("C", "B", "A", "D", "E"))
# Plot
p <- ggplot(df, aes(x, y, fill = x)) +
geom_bar(stat = "identity") +
ggtitle("Bar Chart with changed factor levels")
ggplotly(p)
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)