scale_brewer
scales provide sequential, diverging and qualitative colour schemes from ColorBrewer and then convert them with ggplotly
dsamp <- diamonds[sample(nrow(diamonds), 1000), ] (d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity)))
plotly::ggplotly(d)
dsamp <- diamonds[sample(nrow(diamonds), 1000), ] (d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity))) p <- d + scale_colour_brewer()
plotly::ggplotly(p)
dsamp <- diamonds[sample(nrow(diamonds), 1000), ] (d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity))) p <- d + scale_colour_brewer("Diamond\nclarity")
plotly::ggplotly(p)
dsamp <- diamonds[sample(nrow(diamonds), 1000), ] (d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity))) p <- d + scale_colour_brewer(palette = "Greens")
plotly::ggplotly(p)
dsamp <- diamonds[sample(nrow(diamonds), 1000), ] (d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity))) p <- d + scale_colour_brewer(palette = "Set1")
plotly::ggplotly(p)
p <- ggplot(diamonds, aes(x = price, fill = cut)) + geom_histogram(position = "dodge", binwidth = 1000) p <- p + scale_fill_brewer()
plotly::ggplotly(p)
p <- ggplot(diamonds, aes(x = price, fill = cut)) + geom_histogram(position = "dodge", binwidth = 1000) p <- p + scale_fill_brewer(direction = -1)
plotly::ggplotly(p)
p <- ggplot(diamonds, aes(x = price, fill = cut)) + geom_histogram(position = "dodge", binwidth = 1000) p <- p + scale_fill_brewer(direction = -1) + theme_dark()
plotly::ggplotly(p)
v <- ggplot(faithfuld) + geom_tile(aes(waiting, eruptions, fill = density))
plotly::ggplotly(v)
v <- ggplot(faithfuld) + geom_tile(aes(waiting, eruptions, fill = density)) p <- v + scale_fill_distiller()
plotly::ggplotly(p)
v <- ggplot(faithfuld) + geom_tile(aes(waiting, eruptions, fill = density)) p <- v + scale_fill_distiller(palette = "Spectral")
plotly::ggplotly(p)
v <- ggplot(faithfuld) + geom_tile(aes(waiting, eruptions, fill = density)) p <- v + scale_fill_fermenter()
plotly::ggplotly(p)