Aggregations in R
How to use aggregates in R with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for R. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Introduction
Aggregates are a type of transform that can be applied to values in a given expression. Available aggregations are:
Function | Description |
---|---|
count |
Returns the quantity of items for each group. |
sum |
Returns the summation of all numeric values. |
avg |
Returns the average of all numeric values. |
median |
Returns the median of all numeric values. |
mode |
Returns the mode of all numeric values. |
rms |
Returns the rms of all numeric values. |
stddev |
Returns the standard deviation of all numeric values. |
min |
Returns the minimum numeric value for each group. |
max |
Returns the maximum numeric value for each group. |
first |
Returns the first numeric value for each group. |
last |
Returns the last numeric value for each group. |
Basic Example
library(plotly)
fig <- plot_ly(
type = 'scatter',
x = diamonds$cut,
y = diamonds$price,
mode = 'markers',
transforms = list(
list(
type = 'aggregate',
groups = diamonds$cut,
aggregations = list(
list(
target = 'y', func = 'sum', enabled = T
)
)
)
)
)
fig
Aggregate Functions
library(plotly)
library(listviewer)
s <- schema()
agg <- s$transforms$aggregate$attributes$aggregations$items$aggregation$func$values
l = list()
for (i in 1:length(agg)) {
ll = list(method = "restyle",
args = list('transforms[0].aggregations[0].func', agg[i]),
label = agg[i])
l[[i]] = ll
}
fig <- plot_ly(
type = 'scatter',
x = diamonds$cut,
y = diamonds$price,
mode = 'markers',
marker = list(
size = 10,
color = 'blue',
opacity = 0.8
),
transforms = list(
list(
type = 'aggregate',
groups = diamonds$cut,
aggregations = list(
list(
target = 'y', func = 'avg', enabled = T
)
)
)
)
)
fig <- fig %>% layout(
title = '<b>Plotly Aggregations</b><br>use dropdown to change aggregation',
xaxis = list(title = 'Cut'),
yaxis = list(title = 'Price ($)'),
updatemenus = list(
list(
x = 0.25,
y = 1.04,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
buttons = l
)
)
)
fig
Histogram Binning
library(plotly)
df <- read.csv("https://plotly.com/~public.health/17.csv", skipNul = TRUE, encoding = "UTF-8")
labels <- function(size, label) {
list(
args = c("xbins.size", size),
label = label,
method = "restyle"
)
}
fig <- df %>%
plot_ly(
x = ~date,
autobinx = FALSE,
autobiny = TRUE,
marker = list(color = "rgb(68, 68, 68)"),
name = "date",
type = "histogram",
xbins = list(
end = "2016-12-31 12:00",
size = "M1",
start = "1983-12-31 12:00"
)
)
fig <- fig %>% layout(
paper_bgcolor = "rgb(240, 240, 240)",
plot_bgcolor = "rgb(240, 240, 240)",
title = "<b>Shooting Incidents</b><br>use dropdown to change bin size",
xaxis = list(
type = 'date'
),
yaxis = list(
title = "Incidents"
),
updatemenus = list(
list(
x = 0.1,
y = 1.15,
active = 1,
showactive = TRUE,
buttons = list(
labels("D1", "Day"),
labels("M1", "Month"),
labels("M6", "Half Year"),
labels("M12", "Year")
)
)
)
)
fig
Mapping with Aggregations
library(plotly)
df <- read.csv("https://raw.githubusercontent.com/bcdunbar/datasets/master/worldhappiness.csv")
s <- schema()
agg <- s$transforms$aggregate$attributes$aggregations$items$aggregation$func$values
l = list()
for (i in 1:length(agg)) {
ll = list(method = "restyle",
args = list('transforms[0].aggregations[0].func', agg[i]),
label = agg[i])
l[[i]] = ll
}
fig <- df %>%
plot_ly(
type = 'choropleth',
locationmode = 'country names',
locations = ~Country,
z = ~HappinessScore,
autocolorscale = F,
reversescale = T,
colorscale = 'Portland',
transforms = list(list(
type = 'aggregate',
groups = ~Country,
aggregations = list(
list(target = 'z', func = 'sum', enabled = T)
)
))
)
fig <- fig %>% layout(
title = "<b>World Happiness</b>",
geo = list(
showframe = F,
showcoastlines = F
),
updatemenus = list(
list(
x = 0.25,
y = 1.04,
xref = 'paper',
yref = 'paper',
yanchor = 'top',
buttons = l
)
)
)
fig
Reference
See https://plotly.com/r/reference/ for more information and options!
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)