Hexbin Mapbox in Python

How to make a map with Hexagonal Binning of data in Python with Plotly.


New to Plotly?

Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

Simple Count Hexbin

This page details the use of a figure factory. For more examples with Choropleth maps, see this page.

In order to use mapbox styles that require a mapbox token, set the token with plotly.express. You can also use styles that do not require a mapbox token. See more information on this page.

In [1]:
import plotly.figure_factory as ff
import plotly.express as px

px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()

fig = ff.create_hexbin_mapbox(
    data_frame=df, lat="centroid_lat", lon="centroid_lon",
    nx_hexagon=10, opacity=0.9, labels={"color": "Point Count"},
)
fig.update_layout(margin=dict(b=0, t=0, l=0, r=0))
fig.show()

Count Hexbin with Minimum Count and Opacity

In [2]:
import plotly.figure_factory as ff
import plotly.express as px

px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()

fig = ff.create_hexbin_mapbox(
    data_frame=df, lat="centroid_lat", lon="centroid_lon",
    nx_hexagon=10, opacity=0.5, labels={"color": "Point Count"},
    min_count=1,
)
fig.show()

Display the Underlying Data

In [3]:
import plotly.figure_factory as ff
import plotly.express as px

px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()

fig = ff.create_hexbin_mapbox(
    data_frame=df, lat="centroid_lat", lon="centroid_lon",
    nx_hexagon=10, opacity=0.5, labels={"color": "Point Count"},
    min_count=1, color_continuous_scale="Viridis",
    show_original_data=True,
    original_data_marker=dict(size=4, opacity=0.6, color="deeppink")
)
fig.show()

Compute the Mean Value per Hexbin

In [4]:
import plotly.figure_factory as ff
import plotly.express as px
import numpy as np

px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()

fig = ff.create_hexbin_mapbox(
    data_frame=df, lat="centroid_lat", lon="centroid_lon",
    nx_hexagon=10, opacity=0.9, labels={"color": "Average Peak Hour"},
    color="peak_hour", agg_func=np.mean, color_continuous_scale="Icefire", range_color=[0,23]
)
fig.show()

Compute the Sum Value per Hexbin

In [5]:
import plotly.figure_factory as ff
import plotly.express as px
import numpy as np

px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()

fig = ff.create_hexbin_mapbox(
    data_frame=df, lat="centroid_lat", lon="centroid_lon",
    nx_hexagon=10, opacity=0.9, labels={"color": "Summed Car.Hours"},
    color="car_hours", agg_func=np.sum, color_continuous_scale="Magma"
)
fig.show()

Hexbin with Animation

In [6]:
import plotly.figure_factory as ff
import plotly.express as px
import numpy as np

px.set_mapbox_access_token(open(".mapbox_token").read())
np.random.seed(0)

N = 500
n_frames = 12
lat = np.concatenate([
    np.random.randn(N) * 0.5 + np.cos(i / n_frames * 2 * np.pi) + 10
    for i in range(n_frames)
])
lon = np.concatenate([
    np.random.randn(N) * 0.5 + np.sin(i / n_frames * 2 * np.pi)
    for i in range(n_frames)
])
frame = np.concatenate([
    np.ones(N, int) * i for i in range(n_frames)
])

fig = ff.create_hexbin_mapbox(
    lat=lat, lon=lon, nx_hexagon=15, animation_frame=frame,
    color_continuous_scale="Cividis", labels={"color": "Point Count", "frame": "Period"},
    opacity=0.5, min_count=1,
    show_original_data=True, original_data_marker=dict(opacity=0.6, size=4, color="deeppink")
)
fig.update_layout(margin=dict(b=0, t=0, l=0, r=0))
fig.layout.sliders[0].pad.t=20
fig.layout.updatemenus[0].pad.t=40
fig.show()