Hexbin Mapbox in Python
How to make a map with Hexagonal Binning of data in Python with Plotly.
New to Plotly?
Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Simple Count Hexbin¶
This page details the use of a figure factory. For more examples with Choropleth maps, see this page.
In order to use mapbox styles that require a mapbox token, set the token with plotly.express
. You can also use styles that do not require a mapbox token. See more information on this page.
In [1]:
import plotly.figure_factory as ff
import plotly.express as px
px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()
fig = ff.create_hexbin_mapbox(
data_frame=df, lat="centroid_lat", lon="centroid_lon",
nx_hexagon=10, opacity=0.9, labels={"color": "Point Count"},
)
fig.update_layout(margin=dict(b=0, t=0, l=0, r=0))
fig.show()
Count Hexbin with Minimum Count and Opacity¶
In [2]:
import plotly.figure_factory as ff
import plotly.express as px
px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()
fig = ff.create_hexbin_mapbox(
data_frame=df, lat="centroid_lat", lon="centroid_lon",
nx_hexagon=10, opacity=0.5, labels={"color": "Point Count"},
min_count=1,
)
fig.show()
Display the Underlying Data¶
In [3]:
import plotly.figure_factory as ff
import plotly.express as px
px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()
fig = ff.create_hexbin_mapbox(
data_frame=df, lat="centroid_lat", lon="centroid_lon",
nx_hexagon=10, opacity=0.5, labels={"color": "Point Count"},
min_count=1, color_continuous_scale="Viridis",
show_original_data=True,
original_data_marker=dict(size=4, opacity=0.6, color="deeppink")
)
fig.show()
Compute the Mean Value per Hexbin¶
In [4]:
import plotly.figure_factory as ff
import plotly.express as px
import numpy as np
px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()
fig = ff.create_hexbin_mapbox(
data_frame=df, lat="centroid_lat", lon="centroid_lon",
nx_hexagon=10, opacity=0.9, labels={"color": "Average Peak Hour"},
color="peak_hour", agg_func=np.mean, color_continuous_scale="Icefire", range_color=[0,23]
)
fig.show()
Compute the Sum Value per Hexbin¶
In [5]:
import plotly.figure_factory as ff
import plotly.express as px
import numpy as np
px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()
fig = ff.create_hexbin_mapbox(
data_frame=df, lat="centroid_lat", lon="centroid_lon",
nx_hexagon=10, opacity=0.9, labels={"color": "Summed Car.Hours"},
color="car_hours", agg_func=np.sum, color_continuous_scale="Magma"
)
fig.show()
Hexbin with Animation¶
In [6]:
import plotly.figure_factory as ff
import plotly.express as px
import numpy as np
px.set_mapbox_access_token(open(".mapbox_token").read())
np.random.seed(0)
N = 500
n_frames = 12
lat = np.concatenate([
np.random.randn(N) * 0.5 + np.cos(i / n_frames * 2 * np.pi) + 10
for i in range(n_frames)
])
lon = np.concatenate([
np.random.randn(N) * 0.5 + np.sin(i / n_frames * 2 * np.pi)
for i in range(n_frames)
])
frame = np.concatenate([
np.ones(N, int) * i for i in range(n_frames)
])
fig = ff.create_hexbin_mapbox(
lat=lat, lon=lon, nx_hexagon=15, animation_frame=frame,
color_continuous_scale="Cividis", labels={"color": "Point Count", "frame": "Period"},
opacity=0.5, min_count=1,
show_original_data=True, original_data_marker=dict(opacity=0.6, size=4, color="deeppink")
)
fig.update_layout(margin=dict(b=0, t=0, l=0, r=0))
fig.layout.sliders[0].pad.t=20
fig.layout.updatemenus[0].pad.t=40
fig.show()