Supported CSS Colors in Python

A list of supported named CSS Colors


New to Plotly?

Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.

Supported CSS Colors

Many properties in Plotly.py for configuring colors support named CSS colors. For example, marker colors:

In [1]:
import plotly.graph_objects as go

fig = go.Figure([
    go.Bar(
        x=['Jan', 'Feb', 'Mar', 'Apr'],
        y=[20, 14, 25, 16],
        name='Primary Product',
        # Named CSS color
        marker_color='royalblue'
    )
])
    
fig.show()
JanFebMarApr0510152025

These colors are supported in Plotly.py when a property accepts a named CSS color.

Supported Named CSS Colorsaliceblueantiquewhiteaquaaquamarineazurebeigebisqueblackblanchedalmondbluebluevioletbrownburlywoodcadetbluechartreusechocolatecoralcornflowerbluecornsilkcrimsoncyandarkbluedarkcyandarkgoldenroddarkgraydarkgreydarkgreendarkkhakidarkmagentadarkolivegreendarkorangedarkorchiddarkreddarksalmondarkseagreendarkslatebluedarkslategraydarkslategreydarkturquoisedarkvioletdeeppinkdeepskybluedimgraydimgreydodgerbluefirebrickfloralwhiteforestgreenfuchsiagainsboroghostwhitegoldgoldenrodgraygreygreengreenyellowhoneydewhotpinkindianredindigoivorykhakilavenderlavenderblushlawngreenlemonchiffonlightbluelightcorallightcyanlightgoldenrodyellowlightgraylightgreylightgreenlightpinklightsalmonlightseagreenlightskybluelightslategraylightslategreylightsteelbluelightyellowlimelimegreenlinenmagentamaroonmediumaquamarinemediumbluemediumorchidmediumpurplemediumseagreenmediumslatebluemediumspringgreenmediumturquoisemediumvioletredmidnightbluemintcreammistyrosemoccasinnavajowhitenavyoldlaceoliveolivedraborangeorangeredorchidpalegoldenrodpalegreenpaleturquoisepalevioletredpapayawhippeachpuffperupinkplumpowderbluepurpleredrosybrownroyalbluerebeccapurplesaddlebrownsalmonsandybrownseagreenseashellsiennasilverskyblueslateblueslategrayslategreysnowspringgreensteelbluetantealthistletomatoturquoisevioletwheatwhitewhitesmokeyellowyellowgreen

What About Dash?

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )

from dash import Dash, dcc, html

app = Dash()
app.layout = html.Div([
    dcc.Graph(figure=fig)
])

app.run_server(debug=True, use_reloader=False)  # Turn off reloader if inside Jupyter