Violin Plots in ggplot2
How to make Violin Plots in ggplot2 with Plotly.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
Default violin plot
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin()
plotly::ggplotly(p)
Flip plot orientation
library(plotly)
library(ggplot2)
p <-
ggplot(mtcars, aes(mpg, factor(cyl))) +
geom_violin()
plotly::ggplotly(p)
With geom_violin()
, the y-axis must always be the continuous variable, and the x-axis the categorical variable. To create horizontal violin graphs, keep the x- and y-variables as is and add coord_flip()
.
library(plotly)
library(ggplot2)
district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
geom_violin(colour=NA) +
geom_hline(yintercept=0, alpha=0.5) +
labs(title = "Democratic performance in the 2018 House elections, by region and density",
x = "Density Index\nfrom CityLab",
y = "Margin of Victory/Defeat") +
coord_flip()
ggplotly(p)
Add data points with jitter
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin() + geom_jitter(height = 0, width = 0.1)
plotly::ggplotly(p)
Scaling maximum width
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(scale = "count")
plotly::ggplotly(p)
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(scale = "width")
plotly::ggplotly(p)
Disabling default trim
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(trim = FALSE)
plotly::ggplotly(p)
Closer density fit
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(adjust = .5)
plotly::ggplotly(p)
Adding fill
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(aes(fill = cyl))
plotly::ggplotly(p)
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(aes(fill = factor(cyl)))
plotly::ggplotly(p)
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(aes(fill = factor(vs)))
plotly::ggplotly(p)
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(aes(fill = factor(am)))
plotly::ggplotly(p)
Changing border colour
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(fill = "grey80", colour = "#3366FF")
plotly::ggplotly(p)
Enabling quartiles
library(plotly)
library(ggplot2)
p <- ggplot(mtcars, aes(factor(cyl), mpg))
p <- p + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))
plotly::ggplotly(p)
Add facetting
Including facetting by region.
Add colour to the facet titles, centre-align the title, rotate the y-axis title, change the font, and get rid of the unnecessary legend. Note that coord_flip()
flips the axes for the variables and the titles, but does not flip theme()
elements.
Rotated the x-axis text 45 degrees, and used facet_grid
to create a 4x1 facet (compared to facet_wrap
, which defaults to 2x2).
library(plotly)
library(ggplot2)
district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
geom_violin(colour=NA) +
geom_hline(yintercept=0, alpha=0.5) +
facet_grid(.~region) +
labs(title = "Democratic performance in the 2018 House elections, by region and density",
x = "Density Index\nfrom CityLab",
y = "Margin of Victory/Defeat") +
theme(axis.text.x = element_text(angle = -45),
plot.title = element_text(hjust = 0.5),
strip.background = element_rect(fill="lightblue"),
text = element_text(family = 'Fira Sans'),
legend.position = "none")
ggplotly(p)
What About Dash?
Dash for R is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash for R at https://dashr.plot.ly/installation.
Everywhere in this page that you see fig
, you can display the same figure in a Dash for R application by passing it to the figure
argument of the Graph
component from the built-in dashCoreComponents
package like this:
library(plotly)
fig <- plot_ly()
# fig <- fig %>% add_trace( ... )
# fig <- fig %>% layout( ... )
library(dash)
library(dashCoreComponents)
library(dashHtmlComponents)
app <- Dash$new()
app$layout(
htmlDiv(
list(
dccGraph(figure=fig)
)
)
)
app$run_server(debug=TRUE, dev_tools_hot_reload=FALSE)