Polar Charts [Legacy] in Python/v3
Legacy polar charts in python.
Note: this page is part of the documentation for version 3 of Plotly.py, which is not the most recent version.
See our Version 4 Migration Guide for information about how to upgrade.
See our Version 4 Migration Guide for information about how to upgrade.
New to Plotly?¶
Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!
Legacy Plot¶
These polar charts are legacy and will likely be deprecated in Plotly 2.0. Please see the new scatterpolar
and scatterpolargl
trace types for latest and greatest in Plotly polar coordinates.
Basic Polar Chart¶
In [1]:
import plotly.plotly as py
import plotly.graph_objs as go
import pandas as pd
df = pd.read_csv('polar_dataset.csv')
trace1 = go.Scatter(
r=df['x1'],
t=df['y'],
mode='lines',
name='go.Figure8',
marker=dict(
color='none',
line=dict(
color='peru'
)
)
)
trace2 = go.Scatter(
r=df['x2'],
t=df['y'],
mode='lines',
name='Cardioid',
marker=dict(
color='none',
line=dict(
color='darkviolet'
)
)
)
trace3 = go.Scatter(
r=df['x3'],
t=df['y'],
mode='lines',
name='Hypercardioid',
marker=dict(
color='none',
line=dict(
color='deepskyblue'
)
)
)
trace4 = go.Scatter(
r=df['x4'],
t=df['y'],
mode='lines',
name='Subcardioid',
marker=dict(
color='none',
line=dict(
color='orangered'
)
)
)
trace5 = go.Scatter(
r=df['x5'],
t=df['y'],
mode='lines',
name='Supercardioid',
marker=dict(
color='none',
line=dict(
color='green'
)
)
)
data = [trace1, trace2, trace3, trace4, trace5]
layout = go.Layout(
title='Mic Patterns',
font=dict(
family='Arial, sans-serif;',
size=12,
color='#000'
),
orientation=-90
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='polar-line')
Out[1]:
Polar Scatter Chart¶
In [2]:
import plotly.plotly as py
import plotly.graph_objs as go
import numpy as np
trace1 = go.Scatter(
r = np.random.uniform(1,6,size=62),
t = np.random.uniform(30,5,size=62),
mode='markers',
name='Trial 1',
marker=dict(
color='rgb(27,158,119)',
size=110,
line=dict(
color='white'
),
opacity=0.7
)
)
trace2 = go.Scatter(
r=np.random.uniform(3,8,size=62),
t=np.random.uniform(-14,-76,size=62),
mode='markers',
name='Trial 2',
marker=dict(
color='rgb(217,95,2)',
size=110,
line=dict(
color='white'
),
opacity=0.7
)
)
trace3 = go.Scatter(
r=np.random.uniform(1,7,size=62),
t=np.random.uniform(131,111,size=62),
mode='markers',
name='Trial 3',
marker=dict(
color='rgb(117,112,179)',
size=110,
line=dict(
color='white'
),
opacity=0.7
)
)
trace4 = go.Scatter(
r=np.random.uniform(1,9,size=62),
t=np.random.uniform(-140,-177,size=62),
mode='markers',
name='Trial 4',
marker=dict(
color='rgb(231,41,138)',
size=110,
line=dict(
color='white'
),
opacity=0.7
)
)
trace5 = go.Scatter(
r=np.random.uniform(1,3,size=62),
t=np.random.uniform(-100,-163,size=62),
mode='markers',
name='Trial 5',
marker=dict(
color='rgb(102,166,30)',
size=110,
line=dict(
color='white'
),
opacity=0.7
)
)
trace6 = go.Scatter(
r=np.random.uniform(0,5,size=62),
t=np.random.uniform(66,47,size=62),
mode='markers',
name='Trial 6',
marker=dict(
color='rgb(230,171,2)',
size=110,
line=dict(
color='white'
),
opacity=0.7
)
)
data = [trace1, trace2, trace3, trace4, trace5, trace6]
layout = go.Layout(
title='Hobbs-Pearson Trials',
font=dict(
size=15
),
plot_bgcolor='rgb(223, 223, 223)',
angularaxis=dict(
tickcolor='rgb(253,253,253)'
)
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig)
Out[2]:
Wind Rose Chart¶
In [3]:
import plotly.plotly as py
import plotly.graph_objs as go
trace1 = go.Area(
r=[77.5, 72.5, 70.0, 45.0, 22.5, 42.5, 40.0, 62.5],
t=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'],
name='11-14 m/s',
marker=dict(
color='rgb(106,81,163)'
)
)
trace2 = go.Area(
r=[57.49999999999999, 50.0, 45.0, 35.0, 20.0, 22.5, 37.5, 55.00000000000001],
t=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'],
name='8-11 m/s',
marker=dict(
color='rgb(158,154,200)'
)
)
trace3 = go.Area(
r=[40.0, 30.0, 30.0, 35.0, 7.5, 7.5, 32.5, 40.0],
t=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'],
name='5-8 m/s',
marker=dict(
color='rgb(203,201,226)'
)
)
trace4 = go.Area(
r=[20.0, 7.5, 15.0, 22.5, 2.5, 2.5, 12.5, 22.5],
t=['North', 'N-E', 'East', 'S-E', 'South', 'S-W', 'West', 'N-W'],
name='< 5 m/s',
marker=dict(
color='rgb(242,240,247)'
)
)
data = [trace1, trace2, trace3, trace4]
layout = go.Layout(
title='Wind Speed Distribution in Laurel, NE',
font=dict(
size=16
),
legend=dict(
font=dict(
size=16
)
),
radialaxis=dict(
ticksuffix='%'
),
orientation=270
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='polar-area-chart')
Out[3]:
Reference¶
See https://plotly.com/python/reference/#area for more information and chart attribute options!