Network Graphs Comparison in Python/v3
Comparing a Network Graph created with igraph to one created with networkx in Python with Plotly.
See our Version 4 Migration Guide for information about how to upgrade.
New to Plotly?¶
Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!# Network Graphs with Plotly
Comparison¶
In this tutorial we plot the same network - the coauthorship network of scientists working on network theory and experiment - first as an igraph.Graph
object, with the Kamada-Kawai layout, and then as a networkx.Graph
, with the Fruchterman-Reingold layout. Install the Python libraries with sudo pip install python-igraph
and sudo pip install networkx
.
The graph data are read from a gml file, posted at UC Irvine Network Data Repository:
igraph¶
import igraph as ig
G=ig.Graph.Read_GML('netscience.gml.txt')
labels=list(G.vs['label'])
N=len(labels)
E=[e.tuple for e in G.es]# list of edges
layt=G.layout('kk') #kamada-kawai layout
type(layt)
import plotly.plotly as py
from plotly.graph_objs import *
Xn=[layt[k][0] for k in range(N)]
Yn=[layt[k][1] for k in range(N)]
Xe=[]
Ye=[]
for e in E:
Xe+=[layt[e[0]][0],layt[e[1]][0], None]
Ye+=[layt[e[0]][1],layt[e[1]][1], None]
trace1=Scatter(x=Xe,
y=Ye,
mode='lines',
line= dict(color='rgb(210,210,210)', width=1),
hoverinfo='none'
)
trace2=Scatter(x=Xn,
y=Yn,
mode='markers',
name='ntw',
marker=dict(symbol='circle-dot',
size=5,
color='#6959CD',
line=dict(color='rgb(50,50,50)', width=0.5)
),
text=labels,
hoverinfo='text'
)
axis=dict(showline=False, # hide axis line, grid, ticklabels and title
zeroline=False,
showgrid=False,
showticklabels=False,
title=''
)
width=800
height=800
layout=Layout(title= "Coauthorship network of scientists working on network theory and experiment"+\
"<br> Data source: <a href='https://networkdata.ics.uci.edu/data.php?id=11'> [1]</a>",
font= dict(size=12),
showlegend=False,
autosize=False,
width=width,
height=height,
xaxis=layout.XAxis(axis),
yaxis=layout.YAxis(axis),
margin=layout.Margin(
l=40,
r=40,
b=85,
t=100,
),
hovermode='closest',
annotations=[
dict(
showarrow=False,
text='This igraph.Graph has the Kamada-Kawai layout',
xref='paper',
yref='paper',
x=0,
y=-0.1,
xanchor='left',
yanchor='bottom',
font=dict(
size=14
)
)
]
)
data=[trace1, trace2]
fig=Figure(data=data, layout=layout)
py.iplot(fig, filename='Coautorship-network-igraph')
Networkx¶
Now let us read the same gml file, define the network as a networkx.Graph, and plot it with Fruchterman Reingold layout (networkx does not provide the Kamada-Kawai layout).
Because networkx cannot read the gml file (why?!!), we define the networkx.Graph from data provided by the igraph approach above.
import networkx as nx
V=range(N)# list of vertices
g=nx.Graph()
g.add_nodes_from(V)
g.add_edges_from(E)# E is the list of edges
pos=nx.fruchterman_reingold_layout(g)
Data for the Plotly plot of the same network but with a different layout:
Xv=[pos[k][0] for k in range(N)]
Yv=[pos[k][1] for k in range(N)]
Xed=[]
Yed=[]
for edge in E:
Xed+=[pos[edge[0]][0],pos[edge[1]][0], None]
Yed+=[pos[edge[0]][1],pos[edge[1]][1], None]
trace3=Scatter(x=Xed,
y=Yed,
mode='lines',
line=dict(color='rgb(210,210,210)', width=1),
hoverinfo='none'
)
trace4=Scatter(x=Xv,
y=Yv,
mode='markers',
name='net',
marker=dict(symbol='circle-dot',
size=5,
color='#6959CD',
line=dict(color='rgb(50,50,50)', width=0.5)
),
text=labels,
hoverinfo='text'
)
annot="This networkx.Graph has the Fruchterman-Reingold layout<br>Code:"+\
"<a href='http://nbviewer.ipython.org/gist/empet/07ea33b2e4e0b84193bd'> [2]</a>"
data1=[trace3, trace4]
fig1=Figure(data=data1, layout=layout)
fig1['layout']['annotations'][0]['text']=annot
py.iplot(fig1, filename='Coautorship-network-nx')
Zoom in a selected region of nodes to see that edges are also plotted, but due to the node positions assigned by FR layout, they are invisible at the first sight.
We get a similar plot setting pos=nx.spring_layout(g).
Reference¶
See https://plotly.com/python/reference/#scatter for more information and chart attribute options!