Cmocean Colorscales in Python/v3

How to make Cmocean Colorscales in Python with Plotly.


Note: this page is part of the documentation for version 3 of Plotly.py, which is not the most recent version.
See our Version 4 Migration Guide for information about how to upgrade.

New to Plotly?

Plotly's Python library is free and open source! Get started by downloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

cmocean

cmocean is a package containing colormaps for commonly-used oceanographic variables. Below we provide a function to convert a cmocean colormap to a Plotly colorscale. Check out all of the cmocean colormaps below!

Imports

In [2]:
import plotly.plotly as py
import plotly.graph_objs as go
from plotly import tools

import cmocean

import numpy as np
import os

Defining Colormaps

In [3]:
import cmocean

def cmocean_to_plotly(cmap, pl_entries):
    h = 1.0/(pl_entries-1)
    pl_colorscale = []

    for k in range(pl_entries):
        C = map(np.uint8, np.array(cmap(k*h)[:3])*255)
        pl_colorscale.append([k*h, 'rgb'+str((C[0], C[1], C[2]))])

    return pl_colorscale

The examples data can be downloaded from here.

In [4]:
# Plotting the colorscale.

example_dir = os.path.join(os.path.dirname('__file__'), "examples")
hist2d = np.loadtxt(os.path.join(example_dir, "hist2d.txt"))
st_helens = np.loadtxt(os.path.join(example_dir,
                                        "st-helens_before-modified.txt.gz")).T
dx = dy = 0.05
y, x = np.mgrid[-5 : 5 + dy : dy, -5 : 10 + dx : dx]
z = np.sin(x)**10 + np.cos(10 + y*x) + np.cos(x) + 0.2*y + 0.1*x

elem_len = [len(hist2d), len(st_helens), len(z)]
max_len = max(elem_len)

def colorscale_plot(colorscale, title):
    trace1 = go.Heatmap(z=hist2d, colorscale=colorscale, showscale=False)
    trace2 = go.Heatmap(z=st_helens, colorscale=colorscale, y0=-5, x0=-5)
    trace3 = go.Heatmap(z=z,colorscale=colorscale, showscale=False)

    fig = tools.make_subplots(rows=1, cols=3, print_grid=False)
    fig.append_trace(trace1, 1, 1)
    fig.append_trace(trace2, 1, 2)
    fig.append_trace(trace3, 1, 3)

    fig['layout'].update(title=title)
    fig['layout']['xaxis2'].update(range=[0, 450])
    fig['layout']['yaxis2'].update(range=[0, 270])

    return fig

Thermal

In [5]:
thermal = cmocean_to_plotly(cmocean.cm.thermal, max_len)
py.iplot(colorscale_plot(colorscale=thermal, title='Thermal'))
Out[5]:

Haline

In [8]:
haline = cmocean_to_plotly(cmocean.cm.haline, max_len)
py.iplot(colorscale_plot(colorscale=haline, title='Haline'))
Out[8]:

Solar

In [9]:
solar = cmocean_to_plotly(cmocean.cm.solar, max_len)
py.iplot(colorscale_plot(colorscale=solar, title='Solar'))
Out[9]:

Ice

In [10]:
ice = cmocean_to_plotly(cmocean.cm.ice, max_len)
py.iplot(colorscale_plot(colorscale=ice, title='Ice'))
Out[10]:

Gray

In [11]:
gray = cmocean_to_plotly(cmocean.cm.gray, max_len)
py.iplot(colorscale_plot(colorscale=gray, title='Gray'))
Out[11]:

Oxy

In [12]:
oxy = cmocean_to_plotly(cmocean.cm.oxy, max_len)
py.iplot(colorscale_plot(colorscale=oxy, title='Oxy'))
Out[12]:

Deep

In [13]:
deep = cmocean_to_plotly(cmocean.cm.deep, max_len)
py.iplot(colorscale_plot(colorscale=deep, title='Deep'))
Out[13]:

Dense

In [15]:
dense = cmocean_to_plotly(cmocean.cm.dense, max_len)
py.iplot(colorscale_plot(colorscale=dense, title='Dense'))
Out[15]:

Algae

In [16]:
algae = cmocean_to_plotly(cmocean.cm.algae, max_len)
py.iplot(colorscale_plot(colorscale=algae, title='Algae'))
Out[16]:

Matter

In [17]:
matter = cmocean_to_plotly(cmocean.cm.matter, max_len)
py.iplot(colorscale_plot(colorscale=matter, title='Matter'))
Out[17]:

Turbid

In [18]:
turbid = cmocean_to_plotly(cmocean.cm.turbid, max_len)
py.iplot(colorscale_plot(colorscale=turbid, title='Turbid'))
Out[18]:

Speed

In [20]:
speed = cmocean_to_plotly(cmocean.cm.speed, max_len)
py.iplot(colorscale_plot(colorscale=speed, title='Speed'))
Out[20]:

Amp

In [21]:
amp = cmocean_to_plotly(cmocean.cm.amp, max_len)
py.iplot(colorscale_plot(colorscale=amp, title='Amp'))
Out[21]:

Tempo

In [22]:
tempo = cmocean_to_plotly(cmocean.cm.tempo, max_len)
py.iplot(colorscale_plot(colorscale=tempo, title='Tempo'))
Out[22]:

Phase

In [23]:
phase = cmocean_to_plotly(cmocean.cm.phase, max_len)
py.iplot(colorscale_plot(colorscale=phase, title='Phase'))
Out[23]:

Balance

In [24]:
balance = cmocean_to_plotly(cmocean.cm.balance, max_len)
py.iplot(colorscale_plot(colorscale=balance, title='Balance'))
Out[24]:

Delta

In [25]:
delta = cmocean_to_plotly(cmocean.cm.delta, max_len)
py.iplot(colorscale_plot(colorscale=delta, title='Delta'))
Out[25]:

Curl

In [26]:
curl = cmocean_to_plotly(cmocean.cm.curl, max_len)
py.iplot(colorscale_plot(colorscale=curl, title='Curl'))
Out[26]:

Reference

Learn more about Plotly colorscales here: https://plotly.com/python/colorscales/

Acknowledgment

Special thanks to Kristen Thyng for the statistics of colormaps.