plotly.express package¶
plotly.express
is a terse, consistent, high-level wrapper around plotly.graph_objects
for rapid data exploration and figure generation. Learn more at https://plotly.com/python/plotly-express/
-
class
plotly.express.
Constant
(value, label=None)¶ Bases:
object
Objects of this class can be passed to Plotly Express functions that expect column identifiers or list-like objects to indicate that this attribute should take on a constant value. An optional label can be provided.
-
class
plotly.express.
IdentityMap
¶ Bases:
object
dict
-like object which acts as if the value for any key is the key itself. Objects of this class can be passed in to arguments likecolor_discrete_map
to use the provided data values as colors, rather than mapping them to colors cycled fromcolor_discrete_sequence
. This works for any_map
argument to Plotly Express functions, such asline_dash_map
andsymbol_map
.-
copy
()¶
-
-
class
plotly.express.
Range
(label=None)¶ Bases:
object
Objects of this class can be passed to Plotly Express functions that expect column identifiers or list-like objects to indicate that this attribute should be mapped onto integers starting at 0. An optional label can be provided.
-
plotly.express.
area
(data_frame=None, x=None, y=None, line_group=None, color=None, pattern_shape=None, symbol=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, pattern_shape_sequence=None, pattern_shape_map=None, symbol_sequence=None, symbol_map=None, markers=False, orientation=None, groupnorm=None, log_x=False, log_y=False, range_x=None, range_y=None, line_shape=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a stacked area plot, each row of
data_frame
is represented as a vertex of a polyline mark in 2D space. The area between successive polylines is filled.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.line_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to group rows ofdata_frame
into lines.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.pattern_shape (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign pattern shapes to marks.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.pattern_shape_sequence (list of str) – Strings should define valid plotly.js patterns-shapes. When
pattern_shape
is set, values in that column are assigned patterns- shapes by cycling throughpattern_shape_sequence
in the order described incategory_orders
, unless the value ofpattern_shape
is a key inpattern_shape_map
.pattern_shape_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js patterns-shapes. Used to overridepattern_shape_sequences
to assign a specific patterns-shapes to lines corresponding with specific values. Keys inpattern_shape_map
should be values in the column denoted bypattern_shape
. Alternatively, if the values ofpattern_shape
are valid patterns-shapes names, the string'identity'
may be passed to cause them to be used directly.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.markers (boolean (default
False
)) – IfTrue
, markers are shown on lines.orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)groupnorm (str (default
None
)) – One of'fraction'
or'percent'
. If'fraction'
, the value of each point is divided by the sum of all values at that location coordinate.'percent'
is the same but multiplied by 100 to show percentages.None
will stack up all values at each location coordinate.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
line_shape (str (default
'linear'
)) – One of'linear'
,'spline'
,'hv'
,'vh'
,'hvh'
, or'vhv'
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
bar
(data_frame=None, x=None, y=None, color=None, pattern_shape=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, text=None, base=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, pattern_shape_sequence=None, pattern_shape_map=None, range_color=None, color_continuous_midpoint=None, opacity=None, orientation=None, barmode='relative', log_x=False, log_y=False, range_x=None, range_y=None, text_auto=False, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a bar plot, each row of
data_frame
is represented as a rectangular mark.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.pattern_shape (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign pattern shapes to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.base (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position the base of the bar.error_x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars. Iferror_x_minus
isNone
, error bars will be symmetrical, otherwiseerror_x
is used for the positive direction only.error_x_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars in the negative direction. Ignored iferror_x
isNone
.error_y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars. Iferror_y_minus
isNone
, error bars will be symmetrical, otherwiseerror_y
is used for the positive direction only.error_y_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars in the negative direction. Ignored iferror_y
isNone
.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.pattern_shape_sequence (list of str) – Strings should define valid plotly.js patterns-shapes. When
pattern_shape
is set, values in that column are assigned patterns- shapes by cycling throughpattern_shape_sequence
in the order described incategory_orders
, unless the value ofpattern_shape
is a key inpattern_shape_map
.pattern_shape_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js patterns-shapes. Used to overridepattern_shape_sequences
to assign a specific patterns-shapes to lines corresponding with specific values. Keys inpattern_shape_map
should be values in the column denoted bypattern_shape
. Alternatively, if the values ofpattern_shape
are valid patterns-shapes names, the string'identity'
may be passed to cause them to be used directly.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)barmode (str (default
'relative'
)) – One of'group'
,'overlay'
or'relative'
In'relative'
mode, bars are stacked above zero for positive values and below zero for negative values. In'overlay'
mode, bars are drawn on top of one another. In'group'
mode, bars are placed beside each other.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
text_auto (bool or string (default
False
)) – IfTrue
or a string, the x or y or z values will be displayed as text, depending on the orientation A string like'.2f'
will be interpreted as atexttemplate
numeric formatting directive.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
bar_polar
(data_frame=None, r=None, theta=None, color=None, pattern_shape=None, hover_name=None, hover_data=None, custom_data=None, base=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, pattern_shape_sequence=None, pattern_shape_map=None, range_color=None, color_continuous_midpoint=None, barnorm=None, barmode='relative', direction='clockwise', start_angle=90, range_r=None, range_theta=None, log_r=False, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a polar bar plot, each row of
data_frame
is represented as a wedge mark in polar coordinates.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
r (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the radial axis in polar coordinates.theta (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the angular axis in polar coordinates.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.pattern_shape (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign pattern shapes to marks.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)base (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position the base of the bar.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.pattern_shape_sequence (list of str) – Strings should define valid plotly.js patterns-shapes. When
pattern_shape
is set, values in that column are assigned patterns- shapes by cycling throughpattern_shape_sequence
in the order described incategory_orders
, unless the value ofpattern_shape
is a key inpattern_shape_map
.pattern_shape_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js patterns-shapes. Used to overridepattern_shape_sequences
to assign a specific patterns-shapes to lines corresponding with specific values. Keys inpattern_shape_map
should be values in the column denoted bypattern_shape
. Alternatively, if the values ofpattern_shape
are valid patterns-shapes names, the string'identity'
may be passed to cause them to be used directly.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.barnorm (str (default
None
)) – One of'fraction'
or'percent'
. If'fraction'
, the value of each bar is divided by the sum of all values at that location coordinate.'percent'
is the same but multiplied by 100 to show percentages.None
will stack up all values at each location coordinate.barmode (str (default
'relative'
)) – One of'group'
,'overlay'
or'relative'
In'relative'
mode, bars are stacked above zero for positive values and below zero for negative values. In'overlay'
mode, bars are drawn on top of one another. In'group'
mode, bars are placed beside each other.direction (str) – One of ‘
counterclockwise'
or'clockwise'
. Default is'clockwise'
Sets the direction in which increasing values of the angular axis are drawn.start_angle (int (default
90
)) – Sets start angle for the angular axis, with 0 being due east and 90 being due north.range_r (list of two numbers) – If provided, overrides auto-scaling on the radial axis in polar coordinates.
range_theta (list of two numbers) – If provided, overrides auto-scaling on the angular axis in polar coordinates.
log_r (boolean (default
False
)) – IfTrue
, the radial axis is log-scaled in polar coordinates.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
box
(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, orientation=None, boxmode=None, log_x=False, log_y=False, range_x=None, range_y=None, points=None, notched=False, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a box plot, rows of
data_frame
are grouped together into a box-and-whisker mark to visualize their distribution.Each box spans from quartile 1 (Q1) to quartile 3 (Q3). The second quartile (Q2) is marked by a line inside the box. By default, the whiskers correspond to the box’ edges +/- 1.5 times the interquartile range (IQR: Q3-Q1), see “points” for other options.
- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)boxmode (str (default
'group'
)) – One of'group'
or'overlay'
In'overlay'
mode, boxes are on drawn top of one another. In'group'
mode, boxes are placed beside each other.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
points (str or boolean (default
'outliers'
)) – One of'outliers'
,'suspectedoutliers'
,'all'
, orFalse
. If'outliers'
, only the sample points lying outside the whiskers are shown. If'suspectedoutliers'
, all outlier points are shown and those less than 4*Q1-3*Q3 or greater than 4*Q3-3*Q1 are highlighted with the marker’s'outliercolor'
. If'outliers'
, only the sample points lying outside the whiskers are shown. If'all'
, all sample points are shown. IfFalse
, no sample points are shown and the whiskers extend to the full range of the sample.notched (boolean (default
False
)) – IfTrue
, boxes are drawn with notches.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
choropleth
(data_frame=None, lat=None, lon=None, locations=None, locationmode=None, geojson=None, featureidkey=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, projection=None, scope=None, center=None, fitbounds=None, basemap_visible=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a choropleth map, each row of
data_frame
is represented by a colored region mark on a map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.locations (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are to be interpreted according tolocationmode
and mapped to longitude/latitude.locationmode (str) – One of ‘ISO-3’, ‘USA-states’, or ‘country names’ Determines the set of locations used to match entries in
locations
to regions on the map.geojson (GeoJSON-formatted dict) – Must contain a Polygon feature collection, with IDs, which are references from
locations
.featureidkey (str (default:
'id'
)) – Path to field in GeoJSON feature object with which to match the values passed in tolocations
.The most common alternative to the default is of the form'properties.<key>
.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.projection (str) – One of
'equirectangular'
,'mercator'
,'orthographic'
,'natural earth'
,'kavrayskiy7'
,'miller'
,'robinson'
,'eckert4'
,'azimuthal equal area'
,'azimuthal equidistant'
,'conic equal area'
,'conic conformal'
,'conic equidistant'
,'gnomonic'
,'stereographic'
,'mollweide'
,'hammer'
,'transverse mercator'
,'albers usa'
,'winkel tripel'
,'aitoff'
, or'sinusoidal'`Default depends on `scope
.scope (str (default
'world'
).) – One of'world'
,'usa'
,'europe'
,'asia'
,'africa'
,'north america'
, or'south america'`Default is `'world'
unlessprojection
is set to'albers usa'
, which forces'usa'
.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.fitbounds (str (default
False
).) – One ofFalse
,locations
orgeojson
.basemap_visible (bool) – Force the basemap visibility.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
choropleth_map
(data_frame=None, geojson=None, featureidkey=None, locations=None, color=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, zoom=8, center=None, map_style=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a choropleth map, each row of
data_frame
is represented by a colored region on the map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
geojson (GeoJSON-formatted dict) – Must contain a Polygon feature collection, with IDs, which are references from
locations
.featureidkey (str (default:
'id'
)) – Path to field in GeoJSON feature object with which to match the values passed in tolocations
.The most common alternative to the default is of the form'properties.<key>
.locations (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are to be interpreted according tolocationmode
and mapped to longitude/latitude.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
zoom (int (default
8
)) – Between 0 and 20. Sets map zoom level.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.map_style (str (default
'basic'
)) – Identifier of base map style. Allowed values are'basic'
,'carto- darkmatter'
,'carto-darkmatter-nolabels'
,'carto-positron'
,'carto-positron-nolabels'
,'carto-voyager'
,'carto-voyager- nolabels'
,'dark'
,'light'
,'open-street-map'
,'outdoors'
,'satellite'
,'satellite-streets'
,'streets'
,'white-bg'
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
choropleth_mapbox
(data_frame=None, geojson=None, featureidkey=None, locations=None, color=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, zoom=8, center=None, mapbox_style=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ choropleth_mapbox is deprecated! Use choropleth_map instead. Learn more at: https://plotly.com/python/mapbox-to-maplibre/ In a Mapbox choropleth map, each row of
data_frame
is represented by a colored region on a Mapbox map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
geojson (GeoJSON-formatted dict) – Must contain a Polygon feature collection, with IDs, which are references from
locations
.featureidkey (str (default:
'id'
)) – Path to field in GeoJSON feature object with which to match the values passed in tolocations
.The most common alternative to the default is of the form'properties.<key>
.locations (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are to be interpreted according tolocationmode
and mapped to longitude/latitude.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
zoom (int (default
8
)) – Between 0 and 20. Sets map zoom level.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.mapbox_style (str (default
'basic'
, needs Mapbox API token)) – Identifier of base map style, some of which require a Mapbox or Stadia Maps API token to be set usingplotly.express.set_mapbox_access_token()
. Allowed values which do not require a token are'open-street-map'
,'white-bg'
,'carto- positron'
,'carto-darkmatter'
. Allowed values which require a Mapbox API token are'basic'
,'streets'
,'outdoors'
,'light'
,'dark'
,'satellite'
,'satellite-streets'
. Allowed values which require a Stadia Maps API token are'stamen-terrain'
,'stamen- toner'
,'stamen-watercolor'
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
density_contour
(data_frame=None, x=None, y=None, z=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, orientation=None, color_discrete_sequence=None, color_discrete_map=None, marginal_x=None, marginal_y=None, trendline=None, trendline_options=None, trendline_color_override=None, trendline_scope='trace', log_x=False, log_y=False, range_x=None, range_y=None, histfunc=None, histnorm=None, nbinsx=None, nbinsy=None, text_auto=False, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a density contour plot, rows of
data_frame
are grouped together into contour marks to visualize the 2D distribution of an aggregate functionhistfunc
(e.g. the count or sum) of the valuez
.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.z (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the z axis in cartesian coordinates. Fordensity_heatmap
anddensity_contour
these values are used as the inputs tohistfunc
.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.marginal_x (str) – One of
'rug'
,'box'
,'violin'
, or'histogram'
. If set, a horizontal subplot is drawn above the main plot, visualizing the x-distribution.marginal_y (str) – One of
'rug'
,'box'
,'violin'
, or'histogram'
. If set, a vertical subplot is drawn to the right of the main plot, visualizing the y-distribution.trendline (str) – One of
'ols'
,'lowess'
,'rolling'
,'expanding'
or'ewm'
. If'ols'
, an Ordinary Least Squares regression line will be drawn for each discrete-color/symbol group. If'lowess
’, a Locally Weighted Scatterplot Smoothing line will be drawn for each discrete-color/symbol group. If'rolling
’, a Rolling (e.g. rolling average, rolling median) line will be drawn for each discrete-color/symbol group. If'expanding
’, an Expanding (e.g. expanding average, expanding sum) line will be drawn for each discrete-color/symbol group. If'ewm
’, an Exponentially Weighted Moment (e.g. exponentially-weighted moving average) line will be drawn for each discrete-color/symbol group. See the docstrings for the functions inplotly.express.trendline_functions
for more details on these functions and how to configure them with thetrendline_options
argument.trendline_options (dict) – Options passed as the first argument to the function from
plotly.express.trendline_functions
named in thetrendline
argument.trendline_color_override (str) – Valid CSS color. If provided, and if
trendline
is set, all trendlines will be drawn in this color rather than in the same color as the traces from which they draw their inputs.trendline_scope (str (one of
'trace'
or'overall'
, default'trace'
)) – If'trace'
, then one trendline is drawn per trace (i.e. per color, symbol, facet, animation frame etc) and if'overall'
then one trendline is computed for the entire dataset, and replicated across all facets.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
histfunc (str (default
'count'
if no arguments are provided, else'sum'
)) – One of'count'
,'sum'
,'avg'
,'min'
, or'max'
. Function used to aggregate values for summarization (note: can be normalized withhistnorm
). The arguments to this function are the values ofz
.histnorm (str (default
None
)) – One of'percent'
,'probability'
,'density'
, or'probability density'
IfNone
, the output ofhistfunc
is used as is. If'probability'
, the output ofhistfunc
for a given bin is divided by the sum of the output ofhistfunc
for all bins. If'percent'
, the output ofhistfunc
for a given bin is divided by the sum of the output ofhistfunc
for all bins and multiplied by 100. If'density'
, the output ofhistfunc
for a given bin is divided by the size of the bin. If'probability density'
, the output ofhistfunc
for a given bin is normalized such that it corresponds to the probability that a random event whose distribution is described by the output ofhistfunc
will fall into that bin.nbinsx (int) – Positive integer. Sets the number of bins along the x axis.
nbinsy (int) – Positive integer. Sets the number of bins along the y axis.
text_auto (bool or string (default
False
)) – IfTrue
or a string, the x or y or z values will be displayed as text, depending on the orientation A string like'.2f'
will be interpreted as atexttemplate
numeric formatting directive.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
density_heatmap
(data_frame=None, x=None, y=None, z=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, orientation=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, marginal_x=None, marginal_y=None, opacity=None, log_x=False, log_y=False, range_x=None, range_y=None, histfunc=None, histnorm=None, nbinsx=None, nbinsy=None, text_auto=False, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a density heatmap, rows of
data_frame
are grouped together into colored rectangular tiles to visualize the 2D distribution of an aggregate functionhistfunc
(e.g. the count or sum) of the valuez
.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.z (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the z axis in cartesian coordinates. Fordensity_heatmap
anddensity_contour
these values are used as the inputs tohistfunc
.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.marginal_x (str) – One of
'rug'
,'box'
,'violin'
, or'histogram'
. If set, a horizontal subplot is drawn above the main plot, visualizing the x-distribution.marginal_y (str) – One of
'rug'
,'box'
,'violin'
, or'histogram'
. If set, a vertical subplot is drawn to the right of the main plot, visualizing the y-distribution.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
histfunc (str (default
'count'
if no arguments are provided, else'sum'
)) – One of'count'
,'sum'
,'avg'
,'min'
, or'max'
. Function used to aggregate values for summarization (note: can be normalized withhistnorm
). The arguments to this function are the values ofz
.histnorm (str (default
None
)) – One of'percent'
,'probability'
,'density'
, or'probability density'
IfNone
, the output ofhistfunc
is used as is. If'probability'
, the output ofhistfunc
for a given bin is divided by the sum of the output ofhistfunc
for all bins. If'percent'
, the output ofhistfunc
for a given bin is divided by the sum of the output ofhistfunc
for all bins and multiplied by 100. If'density'
, the output ofhistfunc
for a given bin is divided by the size of the bin. If'probability density'
, the output ofhistfunc
for a given bin is normalized such that it corresponds to the probability that a random event whose distribution is described by the output ofhistfunc
will fall into that bin.nbinsx (int) – Positive integer. Sets the number of bins along the x axis.
nbinsy (int) – Positive integer. Sets the number of bins along the y axis.
text_auto (bool or string (default
False
)) – IfTrue
or a string, the x or y or z values will be displayed as text, depending on the orientation A string like'.2f'
will be interpreted as atexttemplate
numeric formatting directive.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
density_map
(data_frame=None, lat=None, lon=None, z=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, zoom=8, center=None, map_style=None, radius=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a density map, each row of
data_frame
contributes to the intensity of the color of the region around the corresponding point on the map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.z (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the z axis in cartesian coordinates.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
zoom (int (default
8
)) – Between 0 and 20. Sets map zoom level.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.map_style (str (default
'basic'
)) – Identifier of base map style. Allowed values are'basic'
,'carto- darkmatter'
,'carto-darkmatter-nolabels'
,'carto-positron'
,'carto-positron-nolabels'
,'carto-voyager'
,'carto-voyager- nolabels'
,'dark'
,'light'
,'open-street-map'
,'outdoors'
,'satellite'
,'satellite-streets'
,'streets'
,'white-bg'
.radius (int (default is 30)) – Sets the radius of influence of each point.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
density_mapbox
(data_frame=None, lat=None, lon=None, z=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, zoom=8, center=None, mapbox_style=None, radius=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ density_mapbox is deprecated! Use density_map instead. Learn more at: https://plotly.com/python/mapbox-to-maplibre/ In a Mapbox density map, each row of
data_frame
contributes to the intensity of the color of the region around the corresponding point on the map- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.z (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the z axis in cartesian coordinates.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
zoom (int (default
8
)) – Between 0 and 20. Sets map zoom level.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.mapbox_style (str (default
'basic'
, needs Mapbox API token)) – Identifier of base map style, some of which require a Mapbox or Stadia Maps API token to be set usingplotly.express.set_mapbox_access_token()
. Allowed values which do not require a token are'open-street-map'
,'white-bg'
,'carto- positron'
,'carto-darkmatter'
. Allowed values which require a Mapbox API token are'basic'
,'streets'
,'outdoors'
,'light'
,'dark'
,'satellite'
,'satellite-streets'
. Allowed values which require a Stadia Maps API token are'stamen-terrain'
,'stamen- toner'
,'stamen-watercolor'
.radius (int (default is 30)) – Sets the radius of influence of each point.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
ecdf
(data_frame=None, x=None, y=None, color=None, text=None, line_dash=None, symbol=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, animation_frame=None, animation_group=None, markers=False, lines=True, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, line_dash_sequence=None, line_dash_map=None, symbol_sequence=None, symbol_map=None, marginal=None, opacity=None, orientation=None, ecdfnorm='probability', ecdfmode='standard', render_mode='auto', log_x=False, log_y=False, range_x=None, range_y=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a Empirical Cumulative Distribution Function (ECDF) plot, rows of
data_frame
are sorted by the valuex
(ory
iforientation
is'h'
) and their cumulative count (or the cumulative sum ofy
if supplied andorientation
ish
) is drawn as a line.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Iforientation
is'h'
, the cumulative sum of this argument is plotted rather than the cumulative count. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Iforientation
is'v'
, the cumulative sum of this argument is plotted rather than the cumulative count. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.line_dash (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign dash-patterns to lines.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.markers (boolean (default
False
)) – IfTrue
, markers are shown on lines.lines (boolean (default
True
)) – IfFalse
, lines are not drawn (forced toTrue
ifmarkers
isFalse
).category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.line_dash_sequence (list of str) – Strings should define valid plotly.js dash-patterns. When
line_dash
is set, values in that column are assigned dash-patterns by cycling throughline_dash_sequence
in the order described incategory_orders
, unless the value ofline_dash
is a key inline_dash_map
.line_dash_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js dash-patterns. Used to overrideline_dash_sequences
to assign a specific dash-patterns to lines corresponding with specific values. Keys inline_dash_map
should be values in the column denoted byline_dash
. Alternatively, if the values ofline_dash
are valid line-dash names, the string'identity'
may be passed to cause them to be used directly.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.marginal (str) – One of
'rug'
,'box'
,'violin'
, or'histogram'
. If set, a subplot is drawn alongside the main plot, visualizing the distribution.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)ecdfnorm (string or
None
(default'probability'
)) – One of'probability'
or'percent'
IfNone
, values will be raw counts or sums. If `’probability’, values will be probabilities normalized from 0 to 1. If `’percent’, values will be percentages normalized from 0 to 100.ecdfmode (string (default
'standard'
)) – One of'standard'
,'complementary'
or'reversed'
If'standard'
, the ECDF is plotted such that values represent data at or below the point. If'complementary'
, the CCDF is plotted such that values represent data above the point. If'reversed'
, a variant of the CCDF is plotted such that values represent data at or above the point.render_mode (str) – One of
'auto'
,'svg'
or'webgl'
, default'auto'
Controls the browser API used to draw marks.'svg'
is appropriate for figures of less than 1000 data points, and will allow for fully-vectorized output.'webgl'
is likely necessary for acceptable performance above 1000 points but rasterizes part of the output.'auto'
uses heuristics to choose the mode.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
funnel
(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, text=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, opacity=None, orientation=None, log_x=False, log_y=False, range_x=None, range_y=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a funnel plot, each row of
data_frame
is represented as a rectangular sector of a funnel.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
funnel_area
(data_frame=None, names=None, values=None, color=None, color_discrete_sequence=None, color_discrete_map=None, hover_name=None, hover_data=None, custom_data=None, labels=None, title=None, subtitle=None, template=None, width=None, height=None, opacity=None) → plotly.graph_objects._figure.Figure¶ In a funnel area plot, each row of
data_frame
is represented as a trapezoidal sector of a funnel.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
names (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used as labels for sectors.values (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to set values associated to sectors.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
- Returns
- Return type
-
plotly.express.
get_trendline_results
(fig)¶ Extracts fit statistics for trendlines (when applied to figures generated with the
trendline
argument set to"ols"
).- Parameters
fig – the output of a
plotly.express
charting call- Returns
A
pandas.DataFrame
with a column “px_fit_results” containing thestatsmodels
results objects, along with columns identifying the subset of the data the trendline was fit on.
-
plotly.express.
histogram
(data_frame=None, x=None, y=None, color=None, pattern_shape=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, pattern_shape_sequence=None, pattern_shape_map=None, marginal=None, opacity=None, orientation=None, barmode='relative', barnorm=None, histnorm=None, log_x=False, log_y=False, range_x=None, range_y=None, histfunc=None, cumulative=None, nbins=None, text_auto=False, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a histogram, rows of
data_frame
are grouped together into a rectangular mark to visualize the 1D distribution of an aggregate functionhistfunc
(e.g. the count or sum) of the valuey
(orx
iforientation
is'h'
).- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Iforientation
is'h'
, these values are used as inputs tohistfunc
. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Iforientation
is'v'
, these values are used as inputs tohistfunc
. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.pattern_shape (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign pattern shapes to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.pattern_shape_sequence (list of str) – Strings should define valid plotly.js patterns-shapes. When
pattern_shape
is set, values in that column are assigned patterns- shapes by cycling throughpattern_shape_sequence
in the order described incategory_orders
, unless the value ofpattern_shape
is a key inpattern_shape_map
.pattern_shape_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js patterns-shapes. Used to overridepattern_shape_sequences
to assign a specific patterns-shapes to lines corresponding with specific values. Keys inpattern_shape_map
should be values in the column denoted bypattern_shape
. Alternatively, if the values ofpattern_shape
are valid patterns-shapes names, the string'identity'
may be passed to cause them to be used directly.marginal (str) – One of
'rug'
,'box'
,'violin'
, or'histogram'
. If set, a subplot is drawn alongside the main plot, visualizing the distribution.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)barmode (str (default
'relative'
)) – One of'group'
,'overlay'
or'relative'
In'relative'
mode, bars are stacked above zero for positive values and below zero for negative values. In'overlay'
mode, bars are drawn on top of one another. In'group'
mode, bars are placed beside each other.barnorm (str (default
None
)) – One of'fraction'
or'percent'
. If'fraction'
, the value of each bar is divided by the sum of all values at that location coordinate.'percent'
is the same but multiplied by 100 to show percentages.None
will stack up all values at each location coordinate.histnorm (str (default
None
)) – One of'percent'
,'probability'
,'density'
, or'probability density'
IfNone
, the output ofhistfunc
is used as is. If'probability'
, the output ofhistfunc
for a given bin is divided by the sum of the output ofhistfunc
for all bins. If'percent'
, the output ofhistfunc
for a given bin is divided by the sum of the output ofhistfunc
for all bins and multiplied by 100. If'density'
, the output ofhistfunc
for a given bin is divided by the size of the bin. If'probability density'
, the output ofhistfunc
for a given bin is normalized such that it corresponds to the probability that a random event whose distribution is described by the output ofhistfunc
will fall into that bin.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
histfunc (str (default
'count'
if no arguments are provided, else'sum'
)) – One of'count'
,'sum'
,'avg'
,'min'
, or'max'
. Function used to aggregate values for summarization (note: can be normalized withhistnorm
). The arguments to this function are the values ofy
(x
) iforientation
is'v'
('h'
).cumulative (boolean (default
False
)) – IfTrue
, histogram values are cumulative.nbins (int) – Positive integer. Sets the number of bins.
text_auto (bool or string (default
False
)) – IfTrue
or a string, the x or y or z values will be displayed as text, depending on the orientation A string like'.2f'
will be interpreted as atexttemplate
numeric formatting directive.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
icicle
(data_frame=None, names=None, values=None, parents=None, path=None, ids=None, color=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, color_discrete_sequence=None, color_discrete_map=None, hover_name=None, hover_data=None, custom_data=None, labels=None, title=None, subtitle=None, template=None, width=None, height=None, branchvalues=None, maxdepth=None) → plotly.graph_objects._figure.Figure¶ An icicle plot represents hierarchial data with adjoined rectangular sectors that all cascade from root down to leaf in one direction.
- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
names (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used as labels for sectors.values (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to set values associated to sectors.parents (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used as parents in sunburst and treemap charts.path (list of str or int, or Series or array-like) – Either names of columns in
data_frame
, or pandas Series, or array_like objects List of columns names or columns of a rectangular dataframe defining the hierarchy of sectors, from root to leaves. An error is raised if path AND ids or parents is passedids (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to set ids of sectorscolor (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.branchvalues (str) – ‘total’ or ‘remainder’ Determines how the items in
values
are summed. Whenset to ‘total’, items invalues
are taken to be valueof all its descendants. When set to ‘remainder’, itemsinvalues
corresponding to the root and the branches:sectors are taken to be the extra part not part of thesum of the values at their leaves.maxdepth (int) – Positive integer Sets the number of rendered sectors from any given
level
. Setmaxdepth
to -1 to render all thelevels in the hierarchy.
- Returns
- Return type
-
plotly.express.
imshow
(img, zmin=None, zmax=None, origin=None, labels={}, x=None, y=None, animation_frame=None, facet_col=None, facet_col_wrap=None, facet_col_spacing=None, facet_row_spacing=None, color_continuous_scale=None, color_continuous_midpoint=None, range_color=None, title=None, template=None, width=None, height=None, aspect=None, contrast_rescaling=None, binary_string=None, binary_backend='auto', binary_compression_level=4, binary_format='png', text_auto=False) → plotly.graph_objects._figure.Figure¶ Display an image, i.e. data on a 2D regular raster.
- Parameters
img (array-like image, or xarray) –
The image data. Supported array shapes are
(M, N): an image with scalar data. The data is visualized using a colormap.
(M, N, 3): an image with RGB values.
(M, N, 4): an image with RGBA values, i.e. including transparency.
zmin (scalar or iterable, optional) – zmin and zmax define the scalar range that the colormap covers. By default, zmin and zmax correspond to the min and max values of the datatype for integer datatypes (ie [0-255] for uint8 images, [0, 65535] for uint16 images, etc.). For a multichannel image of floats, the max of the image is computed and zmax is the smallest power of 256 (1, 255, 65535) greater than this max value, with a 5% tolerance. For a single-channel image, the max of the image is used. Overridden by range_color.
zmax (scalar or iterable, optional) – zmin and zmax define the scalar range that the colormap covers. By default, zmin and zmax correspond to the min and max values of the datatype for integer datatypes (ie [0-255] for uint8 images, [0, 65535] for uint16 images, etc.). For a multichannel image of floats, the max of the image is computed and zmax is the smallest power of 256 (1, 255, 65535) greater than this max value, with a 5% tolerance. For a single-channel image, the max of the image is used. Overridden by range_color.
origin (str, 'upper' or 'lower' (default 'upper')) – position of the [0, 0] pixel of the image array, in the upper left or lower left corner. The convention ‘upper’ is typically used for matrices and images.
labels (dict with str keys and str values (default
{}
)) – Sets names used in the figure for axis titles (keysx
andy
), colorbar title and hoverlabel (keycolor
). The values should correspond to the desired label to be displayed. Ifimg
is an xarray, dimension names are used for axis titles, and long name for the colorbar title (unless overridden inlabels
). Possible keys are: x, y, and color.x (list-like, optional) – x and y are used to label the axes of single-channel heatmap visualizations and their lengths must match the lengths of the second and first dimensions of the img argument. They are auto-populated if the input is an xarray.
y (list-like, optional) – x and y are used to label the axes of single-channel heatmap visualizations and their lengths must match the lengths of the second and first dimensions of the img argument. They are auto-populated if the input is an xarray.
animation_frame (int or str, optional (default None)) – axis number along which the image array is sliced to create an animation plot. If
img
is an xarray,animation_frame
can be the name of one the dimensions.facet_col (int or str, optional (default None)) – axis number along which the image array is sliced to create a facetted plot. If
img
is an xarray,facet_col
can be the name of one the dimensions.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if
facet_col
is None.facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units. Default is 0.02.
facet_row_spacing (float between 0 and 1) – Spacing between facet rows created when
facet_col_wrap
is used, in paper units. Default is 0.0.7.color_continuous_scale (str or list of str) – colormap used to map scalar data to colors (for a 2D image). This parameter is not used for RGB or RGBA images. If a string is provided, it should be the name of a known color scale, and if a list is provided, it should be a list of CSS- compatible colors.
color_continuous_midpoint (number) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Overridden by range_color or zmin and zmax.
range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale, including overriding
color_continuous_midpoint
. Also overrides zmin and zmax. Used only for single-channel images.title (str) – The figure title.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name or definition.
width (number) – The figure width in pixels.
height (number) – The figure height in pixels.
aspect ('equal', 'auto', or None) –
‘equal’: Ensures an aspect ratio of 1 or pixels (square pixels)
’auto’: The axes is kept fixed and the aspect ratio of pixels is adjusted so that the data fit in the axes. In general, this will result in non-square pixels.
if None, ‘equal’ is used for numpy arrays and ‘auto’ for xarrays (which have typically heterogeneous coordinates)
contrast_rescaling ('minmax', 'infer', or None) – how to determine data values corresponding to the bounds of the color range, when zmin or zmax are not passed. If
minmax
, the min and max values of the image are used. Ifinfer
, a heuristic based on the image data type is used.binary_string (bool, default None) – if True, the image data are first rescaled and encoded as uint8 and then passed to plotly.js as a b64 PNG string. If False, data are passed unchanged as a numerical array. Setting to True may lead to performance gains, at the cost of a loss of precision depending on the original data type. If None, use_binary_string is set to True for multichannel (eg) RGB arrays, and to False for single-channel (2D) arrays. 2D arrays are represented as grayscale and with no colorbar if use_binary_string is True.
binary_backend (str, 'auto' (default), 'pil' or 'pypng') – Third-party package for the transformation of numpy arrays to png b64 strings. If ‘auto’, Pillow is used if installed, otherwise pypng.
binary_compression_level (int, between 0 and 9 (default 4)) – png compression level to be passed to the backend when transforming an array to a png b64 string. Increasing
binary_compression
decreases the size of the png string, but the compression step takes more time. For most images it is not worth using levels greater than 5, but it’s possible to testlen(fig.data[0].source)
and to time the execution ofimshow
to tune the level of compression. 0 means no compression (not recommended).binary_format (str, 'png' (default) or 'jpg') – compression format used to generate b64 string. ‘png’ is recommended since it uses lossless compression, but ‘jpg’ (lossy) compression can result if smaller binary strings for natural images.
text_auto (bool or str (default
False
)) – IfTrue
or a string, single-channelimg
values will be displayed as text. A string like'.2f'
will be interpreted as atexttemplate
numeric formatting directive.
- Returns
fig
- Return type
graph_objects.Figure containing the displayed image
See also
plotly.graph_objects.Image
image trace
plotly.graph_objects.Heatmap
heatmap trace
Notes
In order to update and customize the returned figure, use
go.Figure.update_traces
orgo.Figure.update_layout
.If an xarray is passed, dimensions names and coordinates are used for axes labels and ticks.
-
plotly.express.
line
(data_frame=None, x=None, y=None, line_group=None, color=None, line_dash=None, symbol=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, orientation=None, color_discrete_sequence=None, color_discrete_map=None, line_dash_sequence=None, line_dash_map=None, symbol_sequence=None, symbol_map=None, markers=False, log_x=False, log_y=False, range_x=None, range_y=None, line_shape=None, render_mode='auto', title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a 2D line plot, each row of
data_frame
is represented as a vertex of a polyline mark in 2D space.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.line_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to group rows ofdata_frame
into lines.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.line_dash (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign dash-patterns to lines.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
error_x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars. Iferror_x_minus
isNone
, error bars will be symmetrical, otherwiseerror_x
is used for the positive direction only.error_x_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars in the negative direction. Ignored iferror_x
isNone
.error_y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars. Iferror_y_minus
isNone
, error bars will be symmetrical, otherwiseerror_y
is used for the positive direction only.error_y_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars in the negative direction. Ignored iferror_y
isNone
.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.line_dash_sequence (list of str) – Strings should define valid plotly.js dash-patterns. When
line_dash
is set, values in that column are assigned dash-patterns by cycling throughline_dash_sequence
in the order described incategory_orders
, unless the value ofline_dash
is a key inline_dash_map
.line_dash_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js dash-patterns. Used to overrideline_dash_sequences
to assign a specific dash-patterns to lines corresponding with specific values. Keys inline_dash_map
should be values in the column denoted byline_dash
. Alternatively, if the values ofline_dash
are valid line-dash names, the string'identity'
may be passed to cause them to be used directly.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.markers (boolean (default
False
)) – IfTrue
, markers are shown on lines.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
line_shape (str (default
'linear'
)) – One of'linear'
,'spline'
,'hv'
,'vh'
,'hvh'
, or'vhv'
render_mode (str) – One of
'auto'
,'svg'
or'webgl'
, default'auto'
Controls the browser API used to draw marks.'svg'
is appropriate for figures of less than 1000 data points, and will allow for fully-vectorized output.'webgl'
is likely necessary for acceptable performance above 1000 points but rasterizes part of the output.'auto'
uses heuristics to choose the mode.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
line_3d
(data_frame=None, x=None, y=None, z=None, color=None, line_dash=None, text=None, line_group=None, symbol=None, hover_name=None, hover_data=None, custom_data=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, error_z=None, error_z_minus=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, line_dash_sequence=None, line_dash_map=None, symbol_sequence=None, symbol_map=None, markers=False, log_x=False, log_y=False, log_z=False, range_x=None, range_y=None, range_z=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a 3D line plot, each row of
data_frame
is represented as a vertex of a polyline mark in 3D space.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates.z (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the z axis in cartesian coordinates.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.line_dash (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign dash-patterns to lines.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.line_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to group rows ofdata_frame
into lines.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)error_x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars. Iferror_x_minus
isNone
, error bars will be symmetrical, otherwiseerror_x
is used for the positive direction only.error_x_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars in the negative direction. Ignored iferror_x
isNone
.error_y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars. Iferror_y_minus
isNone
, error bars will be symmetrical, otherwiseerror_y
is used for the positive direction only.error_y_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars in the negative direction. Ignored iferror_y
isNone
.error_z (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size z-axis error bars. Iferror_z_minus
isNone
, error bars will be symmetrical, otherwiseerror_z
is used for the positive direction only.error_z_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size z-axis error bars in the negative direction. Ignored iferror_z
isNone
.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.line_dash_sequence (list of str) – Strings should define valid plotly.js dash-patterns. When
line_dash
is set, values in that column are assigned dash-patterns by cycling throughline_dash_sequence
in the order described incategory_orders
, unless the value ofline_dash
is a key inline_dash_map
.line_dash_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js dash-patterns. Used to overrideline_dash_sequences
to assign a specific dash-patterns to lines corresponding with specific values. Keys inline_dash_map
should be values in the column denoted byline_dash
. Alternatively, if the values ofline_dash
are valid line-dash names, the string'identity'
may be passed to cause them to be used directly.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.markers (boolean (default
False
)) – IfTrue
, markers are shown on lines.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.log_z (boolean (default
False
)) – IfTrue
, the z-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
range_z (list of two numbers) – If provided, overrides auto-scaling on the z-axis in cartesian coordinates.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
line_geo
(data_frame=None, lat=None, lon=None, locations=None, locationmode=None, geojson=None, featureidkey=None, color=None, line_dash=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, line_group=None, symbol=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, line_dash_sequence=None, line_dash_map=None, symbol_sequence=None, symbol_map=None, markers=False, projection=None, scope=None, center=None, fitbounds=None, basemap_visible=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a geographic line plot, each row of
data_frame
is represented as a vertex of a polyline mark on a map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.locations (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are to be interpreted according tolocationmode
and mapped to longitude/latitude.locationmode (str) – One of ‘ISO-3’, ‘USA-states’, or ‘country names’ Determines the set of locations used to match entries in
locations
to regions on the map.geojson (GeoJSON-formatted dict) – Must contain a Polygon feature collection, with IDs, which are references from
locations
.featureidkey (str (default:
'id'
)) – Path to field in GeoJSON feature object with which to match the values passed in tolocations
.The most common alternative to the default is of the form'properties.<key>
.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.line_dash (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign dash-patterns to lines.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)line_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to group rows ofdata_frame
into lines.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.line_dash_sequence (list of str) – Strings should define valid plotly.js dash-patterns. When
line_dash
is set, values in that column are assigned dash-patterns by cycling throughline_dash_sequence
in the order described incategory_orders
, unless the value ofline_dash
is a key inline_dash_map
.line_dash_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js dash-patterns. Used to overrideline_dash_sequences
to assign a specific dash-patterns to lines corresponding with specific values. Keys inline_dash_map
should be values in the column denoted byline_dash
. Alternatively, if the values ofline_dash
are valid line-dash names, the string'identity'
may be passed to cause them to be used directly.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.markers (boolean (default
False
)) – IfTrue
, markers are shown on lines.projection (str) – One of
'equirectangular'
,'mercator'
,'orthographic'
,'natural earth'
,'kavrayskiy7'
,'miller'
,'robinson'
,'eckert4'
,'azimuthal equal area'
,'azimuthal equidistant'
,'conic equal area'
,'conic conformal'
,'conic equidistant'
,'gnomonic'
,'stereographic'
,'mollweide'
,'hammer'
,'transverse mercator'
,'albers usa'
,'winkel tripel'
,'aitoff'
, or'sinusoidal'`Default depends on `scope
.scope (str (default
'world'
).) – One of'world'
,'usa'
,'europe'
,'asia'
,'africa'
,'north america'
, or'south america'`Default is `'world'
unlessprojection
is set to'albers usa'
, which forces'usa'
.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.fitbounds (str (default
False
).) – One ofFalse
,locations
orgeojson
.basemap_visible (bool) – Force the basemap visibility.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
line_map
(data_frame=None, lat=None, lon=None, color=None, text=None, hover_name=None, hover_data=None, custom_data=None, line_group=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, zoom=8, center=None, map_style=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a line map, each row of
data_frame
is represented as a vertex of a polyline mark on the map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)line_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to group rows ofdata_frame
into lines.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.zoom (int (default
8
)) – Between 0 and 20. Sets map zoom level.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.map_style (str (default
'basic'
)) – Identifier of base map style. Allowed values are'basic'
,'carto- darkmatter'
,'carto-darkmatter-nolabels'
,'carto-positron'
,'carto-positron-nolabels'
,'carto-voyager'
,'carto-voyager- nolabels'
,'dark'
,'light'
,'open-street-map'
,'outdoors'
,'satellite'
,'satellite-streets'
,'streets'
,'white-bg'
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
line_mapbox
(data_frame=None, lat=None, lon=None, color=None, text=None, hover_name=None, hover_data=None, custom_data=None, line_group=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, zoom=8, center=None, mapbox_style=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ line_mapbox is deprecated! Use line_map instead. Learn more at: https://plotly.com/python/mapbox-to-maplibre/ In a Mapbox line plot, each row of
data_frame
is represented as a vertex of a polyline mark on a Mapbox map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)line_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to group rows ofdata_frame
into lines.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.zoom (int (default
8
)) – Between 0 and 20. Sets map zoom level.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.mapbox_style (str (default
'basic'
, needs Mapbox API token)) – Identifier of base map style, some of which require a Mapbox or Stadia Maps API token to be set usingplotly.express.set_mapbox_access_token()
. Allowed values which do not require a token are'open-street-map'
,'white-bg'
,'carto- positron'
,'carto-darkmatter'
. Allowed values which require a Mapbox API token are'basic'
,'streets'
,'outdoors'
,'light'
,'dark'
,'satellite'
,'satellite-streets'
. Allowed values which require a Stadia Maps API token are'stamen-terrain'
,'stamen- toner'
,'stamen-watercolor'
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
line_polar
(data_frame=None, r=None, theta=None, color=None, line_dash=None, hover_name=None, hover_data=None, custom_data=None, line_group=None, text=None, symbol=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, line_dash_sequence=None, line_dash_map=None, symbol_sequence=None, symbol_map=None, markers=False, direction='clockwise', start_angle=90, line_close=False, line_shape=None, render_mode='auto', range_r=None, range_theta=None, log_r=False, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a polar line plot, each row of
data_frame
is represented as a vertex of a polyline mark in polar coordinates.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
r (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the radial axis in polar coordinates.theta (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the angular axis in polar coordinates.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.line_dash (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign dash-patterns to lines.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)line_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to group rows ofdata_frame
into lines.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.line_dash_sequence (list of str) – Strings should define valid plotly.js dash-patterns. When
line_dash
is set, values in that column are assigned dash-patterns by cycling throughline_dash_sequence
in the order described incategory_orders
, unless the value ofline_dash
is a key inline_dash_map
.line_dash_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js dash-patterns. Used to overrideline_dash_sequences
to assign a specific dash-patterns to lines corresponding with specific values. Keys inline_dash_map
should be values in the column denoted byline_dash
. Alternatively, if the values ofline_dash
are valid line-dash names, the string'identity'
may be passed to cause them to be used directly.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.markers (boolean (default
False
)) – IfTrue
, markers are shown on lines.direction (str) – One of ‘
counterclockwise'
or'clockwise'
. Default is'clockwise'
Sets the direction in which increasing values of the angular axis are drawn.start_angle (int (default
90
)) – Sets start angle for the angular axis, with 0 being due east and 90 being due north.line_close (boolean (default
False
)) – IfTrue
, an extra line segment is drawn between the first and last point.line_shape (str (default
'linear'
)) – One of'linear'
,'spline'
,'hv'
,'vh'
,'hvh'
, or'vhv'
render_mode (str) – One of
'auto'
,'svg'
or'webgl'
, default'auto'
Controls the browser API used to draw marks.'svg'
is appropriate for figures of less than 1000 data points, and will allow for fully-vectorized output.'webgl'
is likely necessary for acceptable performance above 1000 points but rasterizes part of the output.'auto'
uses heuristics to choose the mode.range_r (list of two numbers) – If provided, overrides auto-scaling on the radial axis in polar coordinates.
range_theta (list of two numbers) – If provided, overrides auto-scaling on the angular axis in polar coordinates.
log_r (boolean (default
False
)) – IfTrue
, the radial axis is log-scaled in polar coordinates.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
line_ternary
(data_frame=None, a=None, b=None, c=None, color=None, line_dash=None, line_group=None, symbol=None, hover_name=None, hover_data=None, custom_data=None, text=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, line_dash_sequence=None, line_dash_map=None, symbol_sequence=None, symbol_map=None, markers=False, line_shape=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a ternary line plot, each row of
data_frame
is represented as a vertex of a polyline mark in ternary coordinates.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
a (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the a axis in ternary coordinates.b (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the b axis in ternary coordinates.c (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the c axis in ternary coordinates.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.line_dash (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign dash-patterns to lines.line_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to group rows ofdata_frame
into lines.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.line_dash_sequence (list of str) – Strings should define valid plotly.js dash-patterns. When
line_dash
is set, values in that column are assigned dash-patterns by cycling throughline_dash_sequence
in the order described incategory_orders
, unless the value ofline_dash
is a key inline_dash_map
.line_dash_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js dash-patterns. Used to overrideline_dash_sequences
to assign a specific dash-patterns to lines corresponding with specific values. Keys inline_dash_map
should be values in the column denoted byline_dash
. Alternatively, if the values ofline_dash
are valid line-dash names, the string'identity'
may be passed to cause them to be used directly.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.markers (boolean (default
False
)) – IfTrue
, markers are shown on lines.line_shape (str (default
'linear'
)) – One of'linear'
,'spline'
,'hv'
,'vh'
,'hvh'
, or'vhv'
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
parallel_categories
(data_frame=None, dimensions=None, color=None, labels=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, title=None, subtitle=None, template=None, width=None, height=None, dimensions_max_cardinality=50) → plotly.graph_objects._figure.Figure¶ In a parallel categories (or parallel sets) plot, each row of
data_frame
is grouped with other rows that share the same values ofdimensions
and then plotted as a polyline mark through a set of parallel axes, one for each of thedimensions
.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
dimensions (list of str or int, or Series or array-like) – Either names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are used for multidimensional visualization.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.dimensions_max_cardinality (int (default 50)) – When
dimensions
isNone
anddata_frame
is provided, columns with more than this number of unique values are excluded from the output. Not used whendimensions
is passed.
- Returns
- Return type
-
plotly.express.
parallel_coordinates
(data_frame=None, dimensions=None, color=None, labels=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a parallel coordinates plot, each row of
data_frame
is represented by a polyline mark which traverses a set of parallel axes, one for each of thedimensions
.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
dimensions (list of str or int, or Series or array-like) – Either names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are used for multidimensional visualization.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
pie
(data_frame=None, names=None, values=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, color_discrete_sequence=None, color_discrete_map=None, hover_name=None, hover_data=None, custom_data=None, category_orders=None, labels=None, title=None, subtitle=None, template=None, width=None, height=None, opacity=None, hole=None) → plotly.graph_objects._figure.Figure¶ In a pie plot, each row of
data_frame
is represented as a sector of a pie.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
names (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used as labels for sectors.values (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to set values associated to sectors.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
hole (float) – Sets the fraction of the radius to cut out of the pie.Use this to make a donut chart.
- Returns
- Return type
-
plotly.express.
scatter
(data_frame=None, x=None, y=None, color=None, symbol=None, size=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, orientation=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, symbol_sequence=None, symbol_map=None, opacity=None, size_max=None, marginal_x=None, marginal_y=None, trendline=None, trendline_options=None, trendline_color_override=None, trendline_scope='trace', log_x=False, log_y=False, range_x=None, range_y=None, render_mode='auto', title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a scatter plot, each row of
data_frame
is represented by a symbol mark in 2D space.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.size (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign mark sizes.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
error_x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars. Iferror_x_minus
isNone
, error bars will be symmetrical, otherwiseerror_x
is used for the positive direction only.error_x_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars in the negative direction. Ignored iferror_x
isNone
.error_y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars. Iferror_y_minus
isNone
, error bars will be symmetrical, otherwiseerror_y
is used for the positive direction only.error_y_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars in the negative direction. Ignored iferror_y
isNone
.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
size_max (int (default
20
)) – Set the maximum mark size when usingsize
.marginal_x (str) – One of
'rug'
,'box'
,'violin'
, or'histogram'
. If set, a horizontal subplot is drawn above the main plot, visualizing the x-distribution.marginal_y (str) – One of
'rug'
,'box'
,'violin'
, or'histogram'
. If set, a vertical subplot is drawn to the right of the main plot, visualizing the y-distribution.trendline (str) – One of
'ols'
,'lowess'
,'rolling'
,'expanding'
or'ewm'
. If'ols'
, an Ordinary Least Squares regression line will be drawn for each discrete-color/symbol group. If'lowess
’, a Locally Weighted Scatterplot Smoothing line will be drawn for each discrete-color/symbol group. If'rolling
’, a Rolling (e.g. rolling average, rolling median) line will be drawn for each discrete-color/symbol group. If'expanding
’, an Expanding (e.g. expanding average, expanding sum) line will be drawn for each discrete-color/symbol group. If'ewm
’, an Exponentially Weighted Moment (e.g. exponentially-weighted moving average) line will be drawn for each discrete-color/symbol group. See the docstrings for the functions inplotly.express.trendline_functions
for more details on these functions and how to configure them with thetrendline_options
argument.trendline_options (dict) – Options passed as the first argument to the function from
plotly.express.trendline_functions
named in thetrendline
argument.trendline_color_override (str) – Valid CSS color. If provided, and if
trendline
is set, all trendlines will be drawn in this color rather than in the same color as the traces from which they draw their inputs.trendline_scope (str (one of
'trace'
or'overall'
, default'trace'
)) – If'trace'
, then one trendline is drawn per trace (i.e. per color, symbol, facet, animation frame etc) and if'overall'
then one trendline is computed for the entire dataset, and replicated across all facets.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
render_mode (str) – One of
'auto'
,'svg'
or'webgl'
, default'auto'
Controls the browser API used to draw marks.'svg'
is appropriate for figures of less than 1000 data points, and will allow for fully-vectorized output.'webgl'
is likely necessary for acceptable performance above 1000 points but rasterizes part of the output.'auto'
uses heuristics to choose the mode.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
scatter_3d
(data_frame=None, x=None, y=None, z=None, color=None, symbol=None, size=None, text=None, hover_name=None, hover_data=None, custom_data=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, error_z=None, error_z_minus=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, size_max=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, symbol_sequence=None, symbol_map=None, opacity=None, log_x=False, log_y=False, log_z=False, range_x=None, range_y=None, range_z=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a 3D scatter plot, each row of
data_frame
is represented by a symbol mark in 3D space.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates.z (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the z axis in cartesian coordinates.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.size (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign mark sizes.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)error_x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars. Iferror_x_minus
isNone
, error bars will be symmetrical, otherwiseerror_x
is used for the positive direction only.error_x_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size x-axis error bars in the negative direction. Ignored iferror_x
isNone
.error_y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars. Iferror_y_minus
isNone
, error bars will be symmetrical, otherwiseerror_y
is used for the positive direction only.error_y_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size y-axis error bars in the negative direction. Ignored iferror_y
isNone
.error_z (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size z-axis error bars. Iferror_z_minus
isNone
, error bars will be symmetrical, otherwiseerror_z
is used for the positive direction only.error_z_minus (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to size z-axis error bars in the negative direction. Ignored iferror_z
isNone
.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.size_max (int (default
20
)) – Set the maximum mark size when usingsize
.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.log_z (boolean (default
False
)) – IfTrue
, the z-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
range_z (list of two numbers) – If provided, overrides auto-scaling on the z-axis in cartesian coordinates.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
scatter_geo
(data_frame=None, lat=None, lon=None, locations=None, locationmode=None, geojson=None, featureidkey=None, color=None, text=None, symbol=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, size=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, symbol_sequence=None, symbol_map=None, opacity=None, size_max=None, projection=None, scope=None, center=None, fitbounds=None, basemap_visible=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a geographic scatter plot, each row of
data_frame
is represented by a symbol mark on a map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.locations (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are to be interpreted according tolocationmode
and mapped to longitude/latitude.locationmode (str) – One of ‘ISO-3’, ‘USA-states’, or ‘country names’ Determines the set of locations used to match entries in
locations
to regions on the map.geojson (GeoJSON-formatted dict) – Must contain a Polygon feature collection, with IDs, which are references from
locations
.featureidkey (str (default:
'id'
)) – Path to field in GeoJSON feature object with which to match the values passed in tolocations
.The most common alternative to the default is of the form'properties.<key>
.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)size (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign mark sizes.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
size_max (int (default
20
)) – Set the maximum mark size when usingsize
.projection (str) – One of
'equirectangular'
,'mercator'
,'orthographic'
,'natural earth'
,'kavrayskiy7'
,'miller'
,'robinson'
,'eckert4'
,'azimuthal equal area'
,'azimuthal equidistant'
,'conic equal area'
,'conic conformal'
,'conic equidistant'
,'gnomonic'
,'stereographic'
,'mollweide'
,'hammer'
,'transverse mercator'
,'albers usa'
,'winkel tripel'
,'aitoff'
, or'sinusoidal'`Default depends on `scope
.scope (str (default
'world'
).) – One of'world'
,'usa'
,'europe'
,'asia'
,'africa'
,'north america'
, or'south america'`Default is `'world'
unlessprojection
is set to'albers usa'
, which forces'usa'
.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.fitbounds (str (default
False
).) – One ofFalse
,locations
orgeojson
.basemap_visible (bool) – Force the basemap visibility.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
scatter_map
(data_frame=None, lat=None, lon=None, color=None, text=None, hover_name=None, hover_data=None, custom_data=None, size=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, size_max=None, zoom=8, center=None, map_style=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a scatter map, each row of
data_frame
is represented by a symbol mark on the map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)size (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign mark sizes.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
size_max (int (default
20
)) – Set the maximum mark size when usingsize
.zoom (int (default
8
)) – Between 0 and 20. Sets map zoom level.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.map_style (str (default
'basic'
)) – Identifier of base map style. Allowed values are'basic'
,'carto- darkmatter'
,'carto-darkmatter-nolabels'
,'carto-positron'
,'carto-positron-nolabels'
,'carto-voyager'
,'carto-voyager- nolabels'
,'dark'
,'light'
,'open-street-map'
,'outdoors'
,'satellite'
,'satellite-streets'
,'streets'
,'white-bg'
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
scatter_mapbox
(data_frame=None, lat=None, lon=None, color=None, text=None, hover_name=None, hover_data=None, custom_data=None, size=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, size_max=None, zoom=8, center=None, mapbox_style=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ scatter_mapbox is deprecated! Use scatter_map instead. Learn more at: https://plotly.com/python/mapbox-to-maplibre/ In a Mapbox scatter plot, each row of
data_frame
is represented by a symbol mark on a Mapbox map.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
lat (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to latitude on a map.lon (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks according to longitude on a map.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)size (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign mark sizes.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
size_max (int (default
20
)) – Set the maximum mark size when usingsize
.zoom (int (default
8
)) – Between 0 and 20. Sets map zoom level.center (dict) – Dict keys are
'lat'
and'lon'
Sets the center point of the map.mapbox_style (str (default
'basic'
, needs Mapbox API token)) – Identifier of base map style, some of which require a Mapbox or Stadia Maps API token to be set usingplotly.express.set_mapbox_access_token()
. Allowed values which do not require a token are'open-street-map'
,'white-bg'
,'carto- positron'
,'carto-darkmatter'
. Allowed values which require a Mapbox API token are'basic'
,'streets'
,'outdoors'
,'light'
,'dark'
,'satellite'
,'satellite-streets'
. Allowed values which require a Stadia Maps API token are'stamen-terrain'
,'stamen- toner'
,'stamen-watercolor'
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
scatter_matrix
(data_frame=None, dimensions=None, color=None, symbol=None, size=None, hover_name=None, hover_data=None, custom_data=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, symbol_sequence=None, symbol_map=None, opacity=None, size_max=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a scatter plot matrix (or SPLOM), each row of
data_frame
is represented by a multiple symbol marks, one in each cell of a grid of 2D scatter plots, which plot each pair ofdimensions
against each other.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
dimensions (list of str or int, or Series or array-like) – Either names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are used for multidimensional visualization.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.size (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign mark sizes.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
size_max (int (default
20
)) – Set the maximum mark size when usingsize
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
scatter_polar
(data_frame=None, r=None, theta=None, color=None, symbol=None, size=None, hover_name=None, hover_data=None, custom_data=None, text=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, symbol_sequence=None, symbol_map=None, opacity=None, direction='clockwise', start_angle=90, size_max=None, range_r=None, range_theta=None, log_r=False, render_mode='auto', title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a polar scatter plot, each row of
data_frame
is represented by a symbol mark in polar coordinates.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
r (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the radial axis in polar coordinates.theta (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the angular axis in polar coordinates.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.size (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign mark sizes.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
direction (str) – One of ‘
counterclockwise'
or'clockwise'
. Default is'clockwise'
Sets the direction in which increasing values of the angular axis are drawn.start_angle (int (default
90
)) – Sets start angle for the angular axis, with 0 being due east and 90 being due north.size_max (int (default
20
)) – Set the maximum mark size when usingsize
.range_r (list of two numbers) – If provided, overrides auto-scaling on the radial axis in polar coordinates.
range_theta (list of two numbers) – If provided, overrides auto-scaling on the angular axis in polar coordinates.
log_r (boolean (default
False
)) – IfTrue
, the radial axis is log-scaled in polar coordinates.render_mode (str) – One of
'auto'
,'svg'
or'webgl'
, default'auto'
Controls the browser API used to draw marks.'svg'
is appropriate for figures of less than 1000 data points, and will allow for fully-vectorized output.'webgl'
is likely necessary for acceptable performance above 1000 points but rasterizes part of the output.'auto'
uses heuristics to choose the mode.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
scatter_ternary
(data_frame=None, a=None, b=None, c=None, color=None, symbol=None, size=None, text=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, symbol_sequence=None, symbol_map=None, opacity=None, size_max=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a ternary scatter plot, each row of
data_frame
is represented by a symbol mark in ternary coordinates.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
a (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the a axis in ternary coordinates.b (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the b axis in ternary coordinates.c (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the c axis in ternary coordinates.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.symbol (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign symbols to marks.size (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign mark sizes.text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.symbol_sequence (list of str) – Strings should define valid plotly.js symbols. When
symbol
is set, values in that column are assigned symbols by cycling throughsymbol_sequence
in the order described incategory_orders
, unless the value ofsymbol
is a key insymbol_map
.symbol_map (dict with str keys and str values (default
{}
)) – String values should define plotly.js symbols Used to overridesymbol_sequence
to assign a specific symbols to marks corresponding with specific values. Keys insymbol_map
should be values in the column denoted bysymbol
. Alternatively, if the values ofsymbol
are valid symbol names, the string'identity'
may be passed to cause them to be used directly.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
size_max (int (default
20
)) – Set the maximum mark size when usingsize
.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
set_mapbox_access_token
(token)¶ - Parameters
token – A Mapbox token to be used in
plotly.express.scatter_mapbox
andplotly.express.line_mapbox
figures. See https://docs.mapbox.com/help/how-mapbox-works/access-tokens/ for more details
-
plotly.express.
strip
(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, orientation=None, stripmode=None, log_x=False, log_y=False, range_x=None, range_y=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a strip plot each row of
data_frame
is represented as a jittered mark within categories.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)stripmode (str (default
'group'
)) – One of'group'
or'overlay'
In'overlay'
mode, strips are on drawn top of one another. In'group'
mode, strips are placed beside each other.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
sunburst
(data_frame=None, names=None, values=None, parents=None, path=None, ids=None, color=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, color_discrete_sequence=None, color_discrete_map=None, hover_name=None, hover_data=None, custom_data=None, labels=None, title=None, subtitle=None, template=None, width=None, height=None, branchvalues=None, maxdepth=None) → plotly.graph_objects._figure.Figure¶ A sunburst plot represents hierarchial data as sectors laid out over several levels of concentric rings.
- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
names (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used as labels for sectors.values (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to set values associated to sectors.parents (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used as parents in sunburst and treemap charts.path (list of str or int, or Series or array-like) – Either names of columns in
data_frame
, or pandas Series, or array_like objects List of columns names or columns of a rectangular dataframe defining the hierarchy of sectors, from root to leaves. An error is raised if path AND ids or parents is passedids (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to set ids of sectorscolor (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.branchvalues (str) – ‘total’ or ‘remainder’ Determines how the items in
values
are summed. Whenset to ‘total’, items invalues
are taken to be valueof all its descendants. When set to ‘remainder’, itemsinvalues
corresponding to the root and the branches:sectors are taken to be the extra part not part of thesum of the values at their leaves.maxdepth (int) – Positive integer Sets the number of rendered sectors from any given
level
. Setmaxdepth
to -1 to render all thelevels in the hierarchy.
- Returns
- Return type
-
plotly.express.
timeline
(data_frame=None, x_start=None, x_end=None, y=None, color=None, pattern_shape=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, text=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, pattern_shape_sequence=None, pattern_shape_map=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, opacity=None, range_x=None, range_y=None, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a timeline plot, each row of
data_frame
is represented as a rectangular mark on an x axis of typedate
, spanning fromx_start
tox_end
.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x_start (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. (required) Values from this column or array_like are used to position marks along the x axis in cartesian coordinates.x_end (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. (required) Values from this column or array_like are used to position marks along the x axis in cartesian coordinates.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.pattern_shape (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign pattern shapes to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)text (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in the figure as text labels.animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.pattern_shape_sequence (list of str) – Strings should define valid plotly.js patterns-shapes. When
pattern_shape
is set, values in that column are assigned patterns- shapes by cycling throughpattern_shape_sequence
in the order described incategory_orders
, unless the value ofpattern_shape
is a key inpattern_shape_map
.pattern_shape_map (dict with str keys and str values (default
{}
)) – Strings values define plotly.js patterns-shapes. Used to overridepattern_shape_sequences
to assign a specific patterns-shapes to lines corresponding with specific values. Keys inpattern_shape_map
should be values in the column denoted bypattern_shape
. Alternatively, if the values ofpattern_shape
are valid patterns-shapes names, the string'identity'
may be passed to cause them to be used directly.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.opacity (float) – Value between 0 and 1. Sets the opacity for markers.
range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
-
plotly.express.
treemap
(data_frame=None, names=None, values=None, parents=None, ids=None, path=None, color=None, color_continuous_scale=None, range_color=None, color_continuous_midpoint=None, color_discrete_sequence=None, color_discrete_map=None, hover_name=None, hover_data=None, custom_data=None, labels=None, title=None, subtitle=None, template=None, width=None, height=None, branchvalues=None, maxdepth=None) → plotly.graph_objects._figure.Figure¶ A treemap plot represents hierarchial data as nested rectangular sectors.
- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
names (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used as labels for sectors.values (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to set values associated to sectors.parents (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used as parents in sunburst and treemap charts.ids (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to set ids of sectorspath (list of str or int, or Series or array-like) – Either names of columns in
data_frame
, or pandas Series, or array_like objects List of columns names or columns of a rectangular dataframe defining the hierarchy of sectors, from root to leaves. An error is raised if path AND ids or parents is passedcolor (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.color_continuous_scale (list of str) – Strings should define valid CSS-colors This list is used to build a continuous color scale when the column denoted by
color
contains numeric data. Various useful color scales are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.sequential
,plotly.express.colors.diverging
andplotly.express.colors.cyclical
.range_color (list of two numbers) – If provided, overrides auto-scaling on the continuous color scale.
color_continuous_midpoint (number (default
None
)) – If set, computes the bounds of the continuous color scale to have the desired midpoint. Setting this value is recommended when usingplotly.express.colors.diverging
color scales as the inputs tocolor_continuous_scale
.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.branchvalues (str) – ‘total’ or ‘remainder’ Determines how the items in
values
are summed. Whenset to ‘total’, items invalues
are taken to be valueof all its descendants. When set to ‘remainder’, itemsinvalues
corresponding to the root and the branches:sectors are taken to be the extra part not part of thesum of the values at their leaves.maxdepth (int) – Positive integer Sets the number of rendered sectors from any given
level
. Setmaxdepth
to -1 to render all thelevels in the hierarchy.
- Returns
- Return type
-
plotly.express.
violin
(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, orientation=None, violinmode=None, log_x=False, log_y=False, range_x=None, range_y=None, points=None, box=False, title=None, subtitle=None, template=None, width=None, height=None) → plotly.graph_objects._figure.Figure¶ In a violin plot, rows of
data_frame
are grouped together into a curved mark to visualize their distribution.- Parameters
data_frame (DataFrame or array-like or dict) – This argument needs to be passed for column names (and not keyword names) to be used. Array-like and dict are transformed internally to a pandas DataFrame. Optional: if missing, a DataFrame gets constructed under the hood using the other arguments.
x (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the x axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.y (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to position marks along the y axis in cartesian coordinates. Eitherx
ory
can optionally be a list of column references or array_likes, in which case the data will be treated as if it were ‘wide’ rather than ‘long’.color (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign color to marks.facet_row (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the vertical direction.facet_col (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to facetted subplots in the horizontal direction.facet_col_wrap (int) – Maximum number of facet columns. Wraps the column variable at this width, so that the column facets span multiple rows. Ignored if 0, and forced to 0 if
facet_row
or amarginal
is set.facet_row_spacing (float between 0 and 1) – Spacing between facet rows, in paper units. Default is 0.03 or 0.07 when facet_col_wrap is used.
facet_col_spacing (float between 0 and 1) – Spacing between facet columns, in paper units Default is 0.02.
hover_name (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like appear in bold in the hover tooltip.hover_data (str, or list of str or int, or Series or array-like, or dict) – Either a name or list of names of columns in
data_frame
, or pandas Series, or array_like objects or a dict with column names as keys, with values True (for default formatting) False (in order to remove this column from hover information), or a formatting string, for example ‘:.3f’ or ‘|%a’ or list-like data to appear in the hover tooltip or tuples with a bool or formatting string as first element, and list-like data to appear in hover as second element Values from these columns appear as extra data in the hover tooltip.custom_data (str, or list of str or int, or Series or array-like) – Either name or list of names of columns in
data_frame
, or pandas Series, or array_like objects Values from these columns are extra data, to be used in widgets or Dash callbacks for example. This data is not user-visible but is included in events emitted by the figure (lasso selection etc.)animation_frame (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to assign marks to animation frames.animation_group (str or int or Series or array-like) – Either a name of a column in
data_frame
, or a pandas Series or array_like object. Values from this column or array_like are used to provide object-constancy across animation frames: rows with matching `animation_group`s will be treated as if they describe the same object in each frame.category_orders (dict with str keys and list of str values (default
{}
)) – By default, in Python 3.6+, the order of categorical values in axes, legends and facets depends on the order in which these values are first encountered indata_frame
(and no order is guaranteed by default in Python below 3.6). This parameter is used to force a specific ordering of values per column. The keys of this dict should correspond to column names, and the values should be lists of strings corresponding to the specific display order desired.labels (dict with str keys and str values (default
{}
)) – By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.color_discrete_sequence (list of str) – Strings should define valid CSS-colors. When
color
is set and the values in the corresponding column are not numeric, values in that column are assigned colors by cycling throughcolor_discrete_sequence
in the order described incategory_orders
, unless the value ofcolor
is a key incolor_discrete_map
. Various useful color sequences are available in theplotly.express.colors
submodules, specificallyplotly.express.colors.qualitative
.color_discrete_map (dict with str keys and str values (default
{}
)) – String values should define valid CSS-colors Used to overridecolor_discrete_sequence
to assign a specific colors to marks corresponding with specific values. Keys incolor_discrete_map
should be values in the column denoted bycolor
. Alternatively, if the values ofcolor
are valid colors, the string'identity'
may be passed to cause them to be used directly.orientation (str, one of
'h'
for horizontal or'v'
for vertical.) – (default'v'
ifx
andy
are provided and both continuous or both categorical, otherwise'v'`(
‘h’) if `x`(`y
) is categorical andy`(`x
) is continuous, otherwise'v'`(
‘h’) if only `x`(`y
) is provided)violinmode (str (default
'group'
)) – One of'group'
or'overlay'
In'overlay'
mode, violins are on drawn top of one another. In'group'
mode, violins are placed beside each other.log_x (boolean (default
False
)) – IfTrue
, the x-axis is log-scaled in cartesian coordinates.log_y (boolean (default
False
)) – IfTrue
, the y-axis is log-scaled in cartesian coordinates.range_x (list of two numbers) – If provided, overrides auto-scaling on the x-axis in cartesian coordinates.
range_y (list of two numbers) – If provided, overrides auto-scaling on the y-axis in cartesian coordinates.
points (str or boolean (default
'outliers'
)) – One of'outliers'
,'suspectedoutliers'
,'all'
, orFalse
. If'outliers'
, only the sample points lying outside the whiskers are shown. If'suspectedoutliers'
, all outlier points are shown and those less than 4*Q1-3*Q3 or greater than 4*Q3-3*Q1 are highlighted with the marker’s'outliercolor'
. If'outliers'
, only the sample points lying outside the whiskers are shown. If'all'
, all sample points are shown. IfFalse
, no sample points are shown and the whiskers extend to the full range of the sample.box (boolean (default
False
)) – IfTrue
, boxes are drawn inside the violins.title (str) – The figure title.
subtitle (str) – The figure subtitle.
template (str or dict or plotly.graph_objects.layout.Template instance) – The figure template name (must be a key in plotly.io.templates) or definition.
width (int (default
None
)) – The figure width in pixels.height (int (default
None
)) – The figure height in pixels.
- Returns
- Return type
Subpackages¶
Submodules¶
plotly.express.imshow_utils module¶
Vendored code from scikit-image in order to limit the number of dependencies Extracted from scikit-image/skimage/exposure/exposure.py
-
plotly.express.imshow_utils.
intensity_range
(image, range_values='image', clip_negative=False)¶ Return image intensity range (min, max) based on desired value type.
- Parameters
image (array) – Input image.
range_values (str or 2-tuple, optional) –
The image intensity range is configured by this parameter. The possible values for this parameter are enumerated below.
- ’image’
Return image min/max as the range.
- ’dtype’
Return min/max of the image’s dtype as the range.
- dtype-name
Return intensity range based on desired
dtype
. Must be valid key inDTYPE_RANGE
. Note:image
is ignored for this range type.- 2-tuple
Return
range_values
as min/max intensities. Note that there’s no reason to use this function if you just want to specify the intensity range explicitly. This option is included for functions that useintensity_range
to support all desired range types.
clip_negative (bool, optional) – If True, clip the negative range (i.e. return 0 for min intensity) even if the image dtype allows negative values.
-
plotly.express.imshow_utils.
rescale_intensity
(image, in_range='image', out_range='dtype')¶ Return image after stretching or shrinking its intensity levels.
The desired intensity range of the input and output,
in_range
andout_range
respectively, are used to stretch or shrink the intensity range of the input image. See examples below.- Parameters
image (array) – Image array.
in_range (str or 2-tuple, optional) –
Min and max intensity values of input and output image. The possible values for this parameter are enumerated below.
- ’image’
Use image min/max as the intensity range.
- ’dtype’
Use min/max of the image’s dtype as the intensity range.
- dtype-name
Use intensity range based on desired
dtype
. Must be valid key inDTYPE_RANGE
.- 2-tuple
Use
range_values
as explicit min/max intensities.
out_range (str or 2-tuple, optional) –
Min and max intensity values of input and output image. The possible values for this parameter are enumerated below.
- ’image’
Use image min/max as the intensity range.
- ’dtype’
Use min/max of the image’s dtype as the intensity range.
- dtype-name
Use intensity range based on desired
dtype
. Must be valid key inDTYPE_RANGE
.- 2-tuple
Use
range_values
as explicit min/max intensities.
- Returns
out – Image array after rescaling its intensity. This image is the same dtype as the input image.
- Return type
array
Notes
Changed in version 0.17: The dtype of the output array has changed to match the output dtype, or float if the output range is specified by a pair of floats.
See also
equalize_hist
Examples
By default, the min/max intensities of the input image are stretched to the limits allowed by the image’s dtype, since
in_range
defaults to ‘image’ andout_range
defaults to ‘dtype’:>>> image = np.array([51, 102, 153], dtype=np.uint8) >>> rescale_intensity(image) array([ 0, 127, 255], dtype=uint8)
It’s easy to accidentally convert an image dtype from uint8 to float:
>>> 1.0 * image array([ 51., 102., 153.])
Use
rescale_intensity
to rescale to the proper range for float dtypes:>>> image_float = 1.0 * image >>> rescale_intensity(image_float) array([0. , 0.5, 1. ])
To maintain the low contrast of the original, use the
in_range
parameter:>>> rescale_intensity(image_float, in_range=(0, 255)) array([0.2, 0.4, 0.6])
If the min/max value of
in_range
is more/less than the min/max image intensity, then the intensity levels are clipped:>>> rescale_intensity(image_float, in_range=(0, 102)) array([0.5, 1. , 1. ])
If you have an image with signed integers but want to rescale the image to just the positive range, use the
out_range
parameter. In that case, the output dtype will be float:>>> image = np.array([-10, 0, 10], dtype=np.int8) >>> rescale_intensity(image, out_range=(0, 127)) array([ 0. , 63.5, 127. ])
To get the desired range with a specific dtype, use
.astype()
:>>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8) array([ 0, 63, 127], dtype=int8)
If the input image is constant, the output will be clipped directly to the output range: >>> image = np.array([130, 130, 130], dtype=np.int32) >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32) array([127, 127, 127], dtype=int32)