geom_abline
Add reference lines to a plot, either horizontal, vertical, or diagonal and then convert them with ggplotly.
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() p <- p + geom_vline(xintercept = 5)
plotly::ggplotly(p)
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() p <- p + geom_vline(xintercept = 1:5)
plotly::ggplotly(p)
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() p <- p + geom_hline(yintercept = 20)
plotly::ggplotly(p)
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() p <- p + geom_abline() # Can't see it - outside the range of the data
plotly::ggplotly(p)
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() p <- p + geom_abline(intercept = 20)
plotly::ggplotly(p)
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() coef(lm(mpg ~ wt, data = mtcars)) p <- p + geom_abline(intercept = 37, slope = -5)
plotly::ggplotly(p)
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() p <- p + geom_smooth(method = "lm", se = FALSE)
plotly::ggplotly(p)
## `geom_smooth()` using formula 'y ~ x'
p <- ggplot(mtcars, aes(mpg, wt)) + geom_point() + facet_wrap(~ cyl) mean_wt <- data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00)) p <- p + geom_hline(aes(yintercept = wt), mean_wt)
plotly::ggplotly(p)
mean_wt <- data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00)) p <- ggplot(mtcars, aes(mpg, wt, colour = wt)) + geom_point() + geom_hline(aes(yintercept = wt, colour = wt), mean_wt) + facet_wrap(~ cyl)
plotly::ggplotly(p)