scale_discretePosition scales for discrete data and then convert them with ggplotly.
ggplot(diamonds, aes(cut)) + geom_bar()
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())
plotly::ggplotly(d)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())
p <- d + scale_x_discrete("Cut")
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())
p <-
d +
scale_x_discrete(
"Cut",
labels = c(
"Fair" = "F",
"Good" = "G",
"Very Good" = "VG",
"Perfect" = "P",
"Ideal" = "I"
)
)
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())
p <- d + scale_x_discrete(limits = c("Fair","Ideal"))
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())
p <- d + xlim("Fair","Ideal", "Good")
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())
p <- d + ylim("I1", "IF")
plotly::ggplotly(p)
p <- ggplot(mpg, aes(manufacturer, cty)) + geom_point()
plotly::ggplotly(p)
p <- ggplot(mpg, aes(reorder(manufacturer, cty), cty)) + geom_point()
plotly::ggplotly(p)
p <- ggplot(mpg, aes(reorder(manufacturer, displ), cty)) + geom_point()
plotly::ggplotly(p)
p <- ggplot(mpg, aes(reorder(manufacturer, displ), cty)) + geom_point() + scale_x_discrete(labels = abbreviate)
plotly::ggplotly(p)