scale_discrete
Position scales for discrete data and then convert them with ggplotly.
ggplot(diamonds, aes(cut)) + geom_bar()
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) + geom_jitter())
plotly::ggplotly(d)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) + geom_jitter()) p <- d + scale_x_discrete("Cut")
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) + geom_jitter()) p <- d + scale_x_discrete( "Cut", labels = c( "Fair" = "F", "Good" = "G", "Very Good" = "VG", "Perfect" = "P", "Ideal" = "I" ) )
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) + geom_jitter()) p <- d + scale_x_discrete(limits = c("Fair","Ideal"))
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) + geom_jitter()) p <- d + xlim("Fair","Ideal", "Good")
plotly::ggplotly(p)
(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) + geom_jitter()) p <- d + ylim("I1", "IF")
plotly::ggplotly(p)
p <- ggplot(mpg, aes(manufacturer, cty)) + geom_point()
plotly::ggplotly(p)
p <- ggplot(mpg, aes(reorder(manufacturer, cty), cty)) + geom_point()
plotly::ggplotly(p)
p <- ggplot(mpg, aes(reorder(manufacturer, displ), cty)) + geom_point()
plotly::ggplotly(p)
p <- ggplot(mpg, aes(reorder(manufacturer, displ), cty)) + geom_point() + scale_x_discrete(labels = abbreviate)
plotly::ggplotly(p)